INTEGRAL EQUATIONS METHOD AND THE TRANSMISSION PROBLEM FOR THE STOKES SYSTEM

被引:5
作者
Medkova, D. [1 ]
机构
[1] Acad Sci Czech Republ, Inst Math, Zitna 25, CR-11567 Prague 1, Czech Republic
来源
KRAGUJEVAC JOURNAL OF MATHEMATICS | 2015年 / 39卷 / 01期
关键词
Transmission problem; Stokes system; integral equation method;
D O I
10.5937/KgJMath1501053M
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The transmission problem for the Stokes system is studied: Delta v(+/-) = Delta p(+/-), del.v(+/-) = 0 in G(+/-), v(+) -v(-) = g, a(+)T (v(+); p(+)) n - a(-) T (v(-); p) n = f on partial derivative G(+). Here G(+) subset of R-3 is a bounded open set with Lipschitz boundary and G is the corresponding complementary open set. Using the integral equation method we study the problem in homogeneous Sobolev spaces. Under assumption that partial derivative G(+) is of class C-1 we study this problem also in Besov spaces and L-q-solutions of the problem. We show the unique solvability of the problem. Moreover, we solve the corresponding boundary integral equations by the successive approximation method.
引用
收藏
页码:53 / 71
页数:19
相关论文
共 45 条
  • [21] DIRICHLET - TRANSMISSION PROBLEMS FOR GENERAL BRINKMAN OPERATORS ON LIPSCHITZ AND C1 DOMAINS IN RIEMANNIAN MANIFOLDS
    Kohr, Mirela
    Pintea, Cornel
    Wendland, Wolfgang L.
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2011, 15 (04): : 999 - 1018
  • [22] Brinkman-type Operators on Riemannian Manifolds: Transmission Problems in Lipschitz and C 1 Domains
    Kohr, Mirela
    Pintea, Cornel
    Wendland, Wolfgang L.
    [J]. POTENTIAL ANALYSIS, 2010, 32 (03) : 229 - 273
  • [23] STOKES-BRINKMAN TRANSMISSION PROBLEMS ON LIPSCHITZ AND C1 DOMAINS IN RIEMANNIAN MANIFOLD
    Kohr, Mirela
    Pintea, Cornel
    Wendland, Wolfgang L.
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2010, 9 (02) : 493 - 537
  • [24] Lieb E. H., 1997, ANALYSIS
  • [25] Marcus A., 1960, IZVESTIJA MOLD FIL A, V10, P91
  • [26] The inhomogeneous Dirichlet problem for the Stokes system in Lipschitz domains with unit normal close to VMO
    Maz'ya, V.
    Mitrea, M.
    Shaposhnikova, T.
    [J]. FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2009, 43 (03) : 217 - 235
  • [27] Mazya V. G., 1997, DIFFERENTIABLE FUNCT
  • [28] Convergence of the Neumann Series in BEM for the Neumann Problem of the Stokes System
    Medkova, D.
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2011, 116 (03) : 281 - 304
  • [29] Medkova D, 2006, MATEMATICHE, V61, P287
  • [30] Mitrea D., 2006, J INTEGRAL EQUATIONS, V18, P361