INTEGRAL EQUATIONS METHOD AND THE TRANSMISSION PROBLEM FOR THE STOKES SYSTEM

被引:5
作者
Medkova, D. [1 ]
机构
[1] Acad Sci Czech Republ, Inst Math, Zitna 25, CR-11567 Prague 1, Czech Republic
来源
KRAGUJEVAC JOURNAL OF MATHEMATICS | 2015年 / 39卷 / 01期
关键词
Transmission problem; Stokes system; integral equation method;
D O I
10.5937/KgJMath1501053M
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The transmission problem for the Stokes system is studied: Delta v(+/-) = Delta p(+/-), del.v(+/-) = 0 in G(+/-), v(+) -v(-) = g, a(+)T (v(+); p(+)) n - a(-) T (v(-); p) n = f on partial derivative G(+). Here G(+) subset of R-3 is a bounded open set with Lipschitz boundary and G is the corresponding complementary open set. Using the integral equation method we study the problem in homogeneous Sobolev spaces. Under assumption that partial derivative G(+) is of class C-1 we study this problem also in Besov spaces and L-q-solutions of the problem. We show the unique solvability of the problem. Moreover, we solve the corresponding boundary integral equations by the successive approximation method.
引用
收藏
页码:53 / 71
页数:19
相关论文
共 45 条