SOME RESULTS ON CONNECTING ORBITS FOR A CLASS OF HAMILTONIAN-SYSTEMS

被引:257
作者
RABINOWITZ, PH
TANAKA, K
机构
[1] UNIV WISCONSIN,CTR MATH SCI,MADISON,WI 53706
[2] NAGOYA UNIV,DEPT MATH,NAGOYA,AICHI 464,JAPAN
关键词
D O I
10.1007/BF02571356
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:473 / 499
页数:27
相关论文
共 10 条
[1]   MINIMUM-MAXIMUM PRINCIPLE FOR A CLASS OF NON-LINEAR INTEGRAL EQUATIONS [J].
COFFMAN, CV .
JOURNAL D ANALYSE MATHEMATIQUE, 1969, 22 :391-&
[2]  
COTIZELATI V, 1990, MATH ANN, V288, P133
[3]  
Hempel J.A., 1970, THESIS U NEW ENGLAND
[4]  
HOFER H, 1ST ORDER ELLIPTIC S
[5]   CALCULUS OF VARIATIONS IN THE LARGE AND CLASSICAL MECHANICS [J].
KOZLOV, VV .
RUSSIAN MATHEMATICAL SURVEYS, 1985, 40 (02) :37-71
[6]  
Mawhin J., 1989, APPL MATH SCI, V74
[8]  
Nehari Z., 1960, T AM MATH SOC, V95, P101, DOI [10.1090/S0002-9947-1960-0111898-8, DOI 10.1090/S0002-9947-1960-0111898-8]
[9]   HOMOCLINIC ORBITS FOR A CLASS OF HAMILTONIAN-SYSTEMS [J].
RABINOWITZ, PH .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1990, 114 :33-38
[10]   PERIODIC AND HETEROCLINIC ORBITS FOR A PERIODIC HAMILTONIAN SYSTEM [J].
RABINOWITZ, PH .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1989, 6 (05) :331-346