Shilla distance-regular graphs with b(2) = sc(2)

被引:2
作者
Belousov, Ivan Nikolaevich [1 ,2 ]
机构
[1] Russian Acad Sci, Krasovskii Inst Math & Mech, Ural Branch, Ekaterinburg 620990, Russia
[2] Ural Fed Univ, Ekaterinburg 620002, Russia
来源
TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN | 2018年 / 24卷 / 03期
基金
俄罗斯科学基金会;
关键词
distance-regular graph; graph automorphism;
D O I
10.21538/0134-4889-2018-24-3-16-26
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Shilla graph is a distance-regular graph Gamma of diameter 3 whose second eigenvalue is a = a(3). A Shilla graph has intersection array {ab, (a + 1)(b - 1), b(2); 1, c(2), a(b - 1)}. J. Koolen and J. Park showed that, for a given number b, there exist only finitely many Shilla graphs. They also found all possible admissible intersection arrays of Shilla graphs for b is an element of {2, 3}. Earlier the author together with A. A. Makhnev studied Shilla graphs with b(2) = c(2). In the present paper, Shilla graphs with b(2) = sc(2), where s is an integer greater than 1, are studied. For Shilla graphs satisfying this condition and such that their second nonprincipal eigenvalue is - 1, five infinite series of admissible intersection arrays are found. It is shown that, in the case of Shilla graphs without triangles in which b(2) = sc(2) and b < 170, only six admissible intersection arrays are possible. For a Q-polynomial Shilla graph with b(2) = sc(2), admissible intersection arrays are found in the cases b = 4 and b = 5, and this result is used to obtain a list of admissible intersection arrays of Shilla graphs for b is an element of {4, 5} in the general case.
引用
收藏
页码:16 / 26
页数:11
相关论文
empty
未找到相关数据