Some Conjectures on Permanents of Doubly Stochastic Matrices

被引:2
作者
Subramanian, P. [1 ]
Somasundaram, K. [2 ]
机构
[1] Govt Arts Coll, PG & Res Dept Math, Coimbatore 641018, Tamil Nadu, India
[2] Amrita Vishwa Vidyapeetham, Dept Math, Coimbatore 641112, Tamil Nadu, India
关键词
Doubly stochastic matrix; Permanents; Subpermanents;
D O I
10.1080/09720529.2015.1130813
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega(n) denote the set of all doubly stochastic matrices of order n. Foregger [3] raised a question whether per (tJ(n)+(1-t)A) <= per (A) holds for all A is an element of Omega(n) and 0 < t <= n/n-1, where J(n) is the n x n matrix with each entry equal to 1/n. But this inequality does not hold good for all matrices in general. In this paper, we consider the above inequality for subpermanents and we provide a sufficient condition for a matrix Lambda is an element of Omega(n) to satisfy the inequality sigma(k)(tJ(n)+(1-t)A) <= sigma(k)(A) for 0 <= t <= 1 and discuss the consequences of this inequality.
引用
收藏
页码:997 / 1011
页数:15
相关论文
共 19 条
[1]  
BRUALDI RA, 1965, PROC CAMB PHILOS S-M, V61, P741
[2]   An update on Minc's survey of open problems involving permanents [J].
Cheon, GS ;
Wanless, IM .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 403 :314-342
[3]  
Dokovic D.Z., 1967, MAT VESNIK, V19, P566
[4]  
Foregger T.H., 1979, LINEAR MULTILINEAR A, V7, P123, DOI [10.1080/03081087908817268, DOI 10.1080/03081087908817268]
[5]  
Foregger T.H., 1988, LINEAR MULTILINEAR A, V23, P79, DOI [10.1080/03081088808817858, DOI 10.1080/03081088808817858]
[6]  
FRIEDLAND S, 1982, LINEAR MULTILINEAR A, V11, P107
[7]  
Holens F., 1964, THESIS
[8]   DOUBLY STOCHASTIC CIRCULANT MATRICES [J].
HWANG, SG .
DISCRETE MATHEMATICS, 1991, 94 (01) :69-74
[9]  
Kopotun K.A., 1994, LINEAR MULTILINEAR A, V36, P205, DOI [10.1080/03081089408818290, DOI 10.1080/03081089408818290]
[10]   A note on the convexity of the sum of subpermanents [J].
Kopotun, KA .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 245 :157-169