REDUCTION OF SYMPLECTIC MANIFOLDS THROUGH CONSTANTS OF THE MOTION

被引:12
作者
MARMO, G [3 ]
SALETAN, EJ
SIMONI, A
机构
[1] IST NAZL FIS NUCL,NAPOLI,ITALY
[2] NORTHEASTERN UNIV,DEPT PHYS,BOSTON,MA 02115
[3] UNIV NAPLES,IST FIS TEORICA,I-80134 NAPLES,ITALY
来源
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS | 1979年 / 50卷 / 01期
关键词
D O I
10.1007/BF02737620
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We describe the reduction of a dynamical system on a symplectic manifold by the use of constants of the motion. A constant of the motion together with a symplectic structure defines a distribution, from which one obtains a foliation. The Hamiltonian dynamical system is reduced to another of lower dimension on a certain quotient manifold defined by the foliation. The role of the dynamics remaining on the leaves is discussed. © 1979 Società Italiana di Fisica.
引用
收藏
页码:21 / 36
页数:16
相关论文
共 13 条
[1]  
ABRAHAM R, 1967, F MECHANICS
[2]  
ARNOLD V, 1976, METHODES MATH MECANI, P2
[3]  
Brickell F, 1970, DIFFERENTIABLE MANIF
[4]  
CARATU G, 1976, NUOVO CIMENTO B, V31, P1
[5]  
MARLE GM, 1976, SYMPLECTIC MANIFOLDS
[6]   Q-DYNAMICAL SYSTEMS AND CONSTANTS OF MOTION [J].
MARMO, G ;
SIMONI, A .
LETTERE AL NUOVO CIMENTO, 1976, 15 (06) :179-184
[7]   AMBIGUITIES IN LAGRANGIAN AND HAMILTONIAN FORMALISM - TRANSFORMATION PROPERTIES [J].
MARMO, G ;
SALETAN, EJ .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1977, 40 (01) :67-89
[8]  
MARSDEN J, 1974, REP MATH PHYS, V5, P122
[9]  
Meyer Kenneth R., 1973, DYNAMICAL SYSTEMS, P259
[10]  
NEHOROSEV NN, 1972, T MOSCOW MATH SOC, V26, P121