NOTE ON THE FLUX PROBLEM FOR STATIONARY INCOMPRESSIBLE NAVIER-STOKES EQUATIONS IN DOMAINS WITH A MULTIPLY CONNECTED BOUNDARY

被引:34
作者
BORCHERS, W [1 ]
PILECKAS, K [1 ]
机构
[1] UNIV GESAMTHSCH PADERBORN, FACHBEREICH MATH INFORMAT, D-33098 PADERBORN, GERMANY
关键词
NAVIER-STOKES EQUATIONS; FLUX; SOLENOIDAL HOPF EXTENSION; EXISTENCE THEOREM; NEW ESTIMATES;
D O I
10.1007/BF00995126
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present a new proof for the existence of Navier-Stokes flows with nonhomogeneous boundary conditions in domains with multiply connected boundaries. For sufficiently small fluxes, we show the existence of at least one stationary solution with an improved smallness assumption.
引用
收藏
页码:21 / 30
页数:10
相关论文
共 20 条
[2]  
[Anonymous], 1969, MATH THEORY VISCOUS
[3]  
BOGOVSKII ME, 1980, THEORY CUBATURE FORM
[4]  
Borchers W., 1990, HOKKAIDO MATH J, V19, P67
[5]   ON THE STEADY-STATE SOLUTIONS OF THE NAVIER-STOKES EQUATIONS, .3. [J].
FINN, R .
ACTA MATHEMATICA, 1961, 105 (3-4) :197-244
[6]  
FUJITA H, 1961, J FS U TOKYO, VI 9, P59
[7]  
GALDI G. P., 1991, MATEMATICHE CATANIA, V46, P503
[8]  
Galdi GP., 1994, INTRO MATH THEORY NA
[9]  
Gilbarg D., 1983, ELLIPTIC PARTIAL DIF
[10]   A general compactness theorem of hydrodynamics. [J].
Hopf, E .
MATHEMATISCHE ANNALEN, 1940, 117 :764-775