INTEGRALS OF HARMONIC-FUNCTIONS

被引:0
作者
ISRAEL, RB [1 ]
机构
[1] UNIV BRITISH COLUMBIA,VANCOUVER V6T 1W5,BC,CANADA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:623 / 624
页数:2
相关论文
共 50 条
[21]   MODULUS OF CONTINUITY OF HARMONIC-FUNCTIONS [J].
HINKKANEN, A .
JOURNAL D ANALYSE MATHEMATIQUE, 1988, 51 :1-29
[22]   A DUALITY THEOREM FOR HARMONIC-FUNCTIONS [J].
BELL, SR .
MICHIGAN MATHEMATICAL JOURNAL, 1982, 29 (01) :123-128
[24]   SETS OF DETERMINATION FOR HARMONIC-FUNCTIONS [J].
GARDINER, SJ .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 338 (01) :233-243
[25]   ON THE EXISTENCE OF HARMONIC-FUNCTIONS IN LP [J].
QUI, BH ;
MIZUTA, Y .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1981, 33 (03) :505-507
[26]   HARMONIC-FUNCTIONS ON AMENABLE GROUPS [J].
BIRGE, L ;
RAUGI, A .
COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1974, 278 (20) :1287-1289
[27]   POSITIVE HARMONIC-FUNCTIONS AND HYPERBOLICITY [J].
ANCONA, A .
LECTURE NOTES IN MATHEMATICS, 1988, 1344 :1-23
[28]   CARLEMAN APPROXIMATION BY HARMONIC-FUNCTIONS [J].
GARDINER, SJ ;
GOLDSTEIN, M .
AMERICAN JOURNAL OF MATHEMATICS, 1995, 117 (01) :245-255
[29]   ONE GENERALIZATION OF HARMONIC-FUNCTIONS [J].
KOVALEV, VF .
DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1977, (01) :9-12
[30]   MINIMAL INTERPOLATION FOR HARMONIC-FUNCTIONS [J].
BELLER, E ;
FISHER, SD ;
PINCHUK, B .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1982, 25 (APR) :297-304