NUMERICAL-METHODS FOR THE SOLUTION OF SPECIAL 6TH-ORDER BOUNDARY-VALUE-PROBLEMS

被引:59
作者
BOUTAYEB, A [1 ]
TWIZELL, EH [1 ]
机构
[1] BRUNEL UNIV,DEPT MATH & STAT,UXBRIDGE UB8 3PH,MIDDX,ENGLAND
关键词
6TH-ORDER BOUNDARY-VALUE PROBLEMS; GLOBAL EXTRAPOLATION; FINITE DIFFERENCE METHODS;
D O I
10.1080/00207169208804130
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A family of numerical methods is developed for the solution of special nonlinear sixth-order boundary-value problems. Methods with second-, fourth-, sixth- and eighth-order convergence are contained in the family. Global extrapolation procedures on two and three grids, which increase the order of convergence, are outlined.
引用
收藏
页码:207 / 223
页数:17
相关论文
共 10 条
[1]  
Agarwal R.P., 1986, BOUND VALUE PROBL
[2]  
Baldwin P., 1987, Applicable Analysis, V24, P117, DOI 10.1080/00036818708839658
[3]   ASYMPTOTIC ESTIMATES OF THE EIGENVALUES OF A 6TH-ORDER BOUNDARY-VALUE PROBLEM OBTAINED BY USING GLOBAL PHASE-INTEGRAL METHODS [J].
BALDWIN, P .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1987, 322 (1566) :281-305
[4]  
BOUTAYEB A, 1991, THESIS BRUNEL U
[5]  
Chandrasekhar S., 1961, HYDRODYNAMIC HYDROMA
[6]  
Chawla M. M., 1979, BIT (Nordisk Tidskrift for Informationsbehandling), V19, P27, DOI 10.1007/BF01931218
[8]   STELLAR CONVECTION THEORY .2. SINGLE-MODE STUDY OF 2ND CONVECTION ZONE IN AN A-TYPE STAR [J].
TOOMRE, J ;
ZAHN, JP ;
LATOUR, J ;
SPIEGEL, EA .
ASTROPHYSICAL JOURNAL, 1976, 207 (02) :545-563
[9]  
Twizell E., 1988, NUMERICAL MATH, P495
[10]   NUMERICAL-METHODS FOR THE SOLUTION OF SPECIAL AND GENERAL 6TH-ORDER BOUNDARY-VALUE-PROBLEMS, WITH APPLICATIONS TO BENARD LAYER EIGENVALUE PROBLEMS [J].
TWIZELL, EH ;
BOUTAYEB, A .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1990, 431 (1883) :433-450