ABSTRACT NON-LINEAR VOLTERRA EQUATION

被引:11
作者
GRIPENBERG, G [1 ]
机构
[1] UNIV WISCONSIN,DEPT MATH,MADISON,WI 53706
基金
美国国家科学基金会;
关键词
D O I
10.1007/BF02760883
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The existence, uniqueness, regularity and dependence upon data of solutions of the abstract Volterra equation u(t)+∫ 0 t a(t-s)A(u(s))ds∈f(t), t≧0 are studied in a real Banach space. The nonlinear operator A is assumed to be m-accretive and the assumptions on the kernel a do not exclude the possibility that lim t→0+ a(t)=+∞. © 1979 Hebrew University.
引用
收藏
页码:198 / 212
页数:15
相关论文
共 50 条
[21]   NON-LINEAR VOLTERRA INTEGRAL-EQUATION IN A BANACH-SPACE [J].
GRIPENBERG, G .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1978, 66 (01) :207-219
[23]   EXISTENCE AND BOUNDEDNESS RESULTS FOR ABSTRACT NON-LINEAR VOLTERRA-EQUATIONS OF NONCONVOLUTION TYPE [J].
RENNOLET, C .
JOURNAL OF INTEGRAL EQUATIONS, 1981, 3 (02) :137-151
[25]   NON-LINEAR SINGULARLY PERTURBED VOLTERRA INTEGRODIFFERENTIAL EQUATION OCCURRING IN POLYMER RHEOLOGY [J].
LODGE, AS ;
MCLEOD, JB ;
NOHEL, JA .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1978, 80 :99-137
[26]   Taylor polynomial solution of non-linear Volterra-Fredholm integral equation [J].
Mahmoudi, Y .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2005, 82 (07) :881-887
[27]   PERIODIC-SOLUTIONS TO A NON-LINEAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATION [J].
STECH, HW .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1980, 11 (03) :533-544
[29]   Stability of a numerical solution of a non-linear Volterra integral equation of convolution type [J].
Ford, NJ ;
Baker, CTH .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 :401-402
[30]   On Solutions To Open Problems And Volterra-Hammerstein Non-linear Integral Equation [J].
Beloul, Said ;
Tomar, Anita ;
Joshi, Meena .
APPLIED MATHEMATICS E-NOTES, 2022, 22 :692-711