Codes in distance-regular graphs with theta(2) = -1

被引:1
作者
Nirova, Marina Sefovna [1 ]
机构
[1] Kabardino Balkarian State Univ, Nalchik 360004, Russia
来源
TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN | 2018年 / 24卷 / 03期
关键词
distance-regular graph; maximal code;
D O I
10.21538/0134-4889-2018-24-3-155-163
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
If a distance-regular graph Gamma of diameter 3 contains a maximal 1-code C that is both locally regular and last subconstituent perfect, then Gamma has intersection array {a(p+1), cp, a+1; 1, c, ap} or {a(p+1), (a+1)p, c; 1, c, ap}, where a = a(3), c = c(2), and p = p(33)(3) (Jurisic and Vidali). In first case, Gamma has eigenvalue theta(2) = -1 and the graph Gamma(3) is pseudogeometric for GQ(p + 1, a). In the second case, Gamma is a Shilla graph. We study graphs with intersection array {a(p+1), cp, a+1; 1, c, ap} in which any two vertices at distance 3 are in a maximal 1-code. In particular, we find four new infinite families of intersection arrays: {a(a - 2), (a - 1)(a - 3), a + 1; 1, a - 1, a(a - 3)} for a >= 5, {a(2a + 3), 2(a - 1)(a + 1), a + 1; 1, a - 1, 2a(a + 1)} for a not congruent to 1 modulo 3, {a(2a - 3), 2(a - 1)(a - 2), a+1; 1, a - 1, 2a(a - 2)} for even a not congruent to 1 modulo 3, and {a(3a - 4), (a - 1)(3a - 5), a + 1; 1, a - 1, a(3a - 5)} for even a congruent to 0 or 2 modulo 5.
引用
收藏
页码:155 / 163
页数:9
相关论文
共 50 条
  • [41] Periodicities of Grover Walks on Distance-Regular Graphs
    Yoshie, Yusuke
    [J]. GRAPHS AND COMBINATORICS, 2019, 35 (06) : 1305 - 1321
  • [42] Inverse problems in the theory of distance-regular graphs
    Makhnev, Aleksandr Alekseevich
    Paduchikh, Dmitrii Viktorovich
    [J]. TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2018, 24 (03): : 133 - 144
  • [43] On the connectedness of the complement of a ball in distance-regular graphs
    Cioaba, Sebastian M.
    Koolen, Jack H.
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2013, 38 (01) : 191 - 195
  • [44] Triangle-free distance-regular graphs
    Pan, Yeh-jong
    Lu, Min-hsin
    Weng, Chih-wen
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2008, 27 (01) : 23 - 34
  • [45] On the Metric Dimension of Imprimitive Distance-Regular Graphs
    Bailey, Robert F.
    [J]. ANNALS OF COMBINATORICS, 2016, 20 (04) : 641 - 659
  • [46] Triangle-free distance-regular graphs
    Yeh-jong Pan
    Min-hsin Lu
    Chih-wen Weng
    [J]. Journal of Algebraic Combinatorics, 2008, 27 : 23 - 34
  • [47] On some distance-regular graphs with many vertices
    Dean Crnković
    Sanja Rukavina
    Andrea Švob
    [J]. Journal of Algebraic Combinatorics, 2020, 51 : 641 - 652
  • [48] A note on distance-regular graphs with girth 3
    Zhang, GS
    Wang, KS
    [J]. ARS COMBINATORIA, 2004, 71 : 187 - 193
  • [49] On distance-regular graphs with height two, II
    Tomiyama, M
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 1998, 7 (02) : 197 - 220
  • [50] Taut distance-regular graphs of odd diameter
    MacLean, MS
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2003, 17 (02) : 125 - 147