UNIQUENESS OF THE SOLUTIONS OF MULTICHANNEL SCATTERING EQUATION IN 3-PARTICLE SYSTEM

被引:0
作者
MUKHERJEE, S
机构
[1] Theoretical Physics Group, Saha Institute of Nuclear Physics, Bidhannagar, Calcutta
来源
PRAMANA-JOURNAL OF PHYSICS | 1993年 / 41卷 / 06期
关键词
LIPPMAN-SCHWINGER EQUATION; MULTICHANNEL SCATTERING;
D O I
10.1007/BF02875096
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A new approach is made td investigate the old problem of non-uniqueness of the solution of Lippmann-Schwinger equation of three particle system and it is found that even the necessary condition for the existence of the problem is not satisfied.
引用
收藏
页码:483 / 491
页数:9
相关论文
共 12 条
[1]  
Colton D., 1983, INTEGRAL EQUATION ME
[2]  
COURANT R, 1963, METHODS MATH PHYSICS
[3]   SURFACE INTEGRALS IN THE DERIVATION OF THE LIPPMANN-SCHWINGER EQUATION FOR MANY-PARTICLE SYSTEMS [J].
GERJUOY, E ;
ADHIKARI, SK .
PHYSICS LETTERS A, 1986, 115 (1-2) :1-5
[4]   OUTGOING BOUNDARY CONDITION IN REARRANGEMENT COLLISIONS [J].
GERJUOY, E .
PHYSICAL REVIEW, 1958, 109 (05) :1806-1814
[5]  
GLOCKLE W, 1983, QUANTUM MECHANICAL F
[6]   UNIQUENESS OF THE SOLUTION OF THE LIPPMANN-SCHWINGER EQUATION [J].
MUKHERJEE, S .
PRAMANA, 1982, 18 (06) :495-500
[7]   LIPPMANN-SCHWINGER EQUATION [J].
MUKHERJEE, S .
PRAMANA, 1981, 16 (01) :81-89
[8]   SCATTERED WAVE AND LIPPMANN-SCHWINGER EQUATION [J].
MUKHERJEE, S .
PHYSICS LETTERS A, 1981, 83 (01) :1-4
[9]   THE HOMOGENEOUS AND INHOMOGENEOUS EQUATIONS OF SCATTERING [J].
MUKHERJEE, S .
PHYSICS LETTERS A, 1981, 81 (04) :207-210
[10]   TRIAD OF HOMOGENEOUS AND INHOMOGENEOUS 3 PARTICLE LIPPMANN-SCHWINGER EQUATIONS [J].
MUKHERJEE, S .
PRAMANA-JOURNAL OF PHYSICS, 1990, 34 (03) :173-182