SOME FORMULAE FOR A NEW TYPE OF PATH-DEPENDENT OPTION

被引:41
作者
Akahori, Jiro [1 ]
机构
[1] Univ Tokyo, Dept Math Sci, Tokyo 113, Japan
关键词
Options; Black-Scholes model; Feynman-Kac formula; arc-sine law; percentiles;
D O I
10.1214/aoap/1177004769
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we present an explicit form of the distribution function of the occupation time of a Brownian motion with a constant drift (if there is no drift, this is the well-known arc-sine law). We also define the alpha-percentile of the stock price and give an explicit form of the distribution function of this random variable. Using this explicit distribution, we calculate the price of a new type of path-dependent option, called the alpha-percentile option. This option was first introduced by Miura and is based on order statistics.
引用
收藏
页码:383 / 388
页数:6
相关论文
共 10 条
[1]   PRICING OF OPTIONS AND CORPORATE LIABILITIES [J].
BLACK, F ;
SCHOLES, M .
JOURNAL OF POLITICAL ECONOMY, 1973, 81 (03) :637-654
[2]  
FOLLMER H, 1991, B202 U BONN
[3]  
HARRISON J. M, 1981, STOCHASTIC PROCESS A, V15, P214
[4]  
Ito K., 1965, DIFFUSION PROCESSES
[5]  
Kac M., 1951, P 2 BERK S MATH STAT, P189
[6]  
MIURA R., 1992, HITOTSUBASHI J COMME, V27, P15
[7]  
ROGERS L, 1987, DIFFUSIONS MARKOV PR, V2
[8]  
WATANABE S, 1993, GEN ARC SINE LAWS ON
[9]  
Widder DV, 1946, PRINCETON MATH SERIE, V6, P42
[10]  
YOR M, 1993, J APPL PROB IN PRESS