ON SOLUBLE GROUPS OF AUTOMORPHISMS OF NONORIENTABLE KLEIN SURFACES

被引:0
作者
GROMADZKI, G
机构
[1] PEDAGOG UNIV WSP,INST MATH,PL-85064 BYDGOSZCZ,POLAND
[2] UNIV COMPLUTENSE MADRID,MADRID 3,SPAIN
关键词
RIEMANN SURFACES; KLEIN SURFACES; AUTOMORPHISM GROUPS; SOLUBLE GROUPS;
D O I
10.4064/fm-141-3-215-227
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify up to topological type nonorientable bordered Klein surfaces with maximal symmetry and soluble automorphism group provided its solubility degree does not exceed 4. Using this classification we show that a soluble group of automorphisms of a nonorientable Riemann surface of algebraic genus q greater-than-or-equal-to 2 has at most 24(q - 1) elements and that this bound is sharp for infinitely many values of q.
引用
收藏
页码:215 / 227
页数:13
相关论文
共 22 条
[1]   ON NILPOTENT GROUPS OF AUTOMORPHISMS OF KLEIN SURFACES [J].
BUJALANCE, E ;
GROMADZKI, G .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 108 (03) :749-759
[2]   NORMAL-SUBGROUPS OF NEC GROUPS [J].
BUJALANCE, E .
MATHEMATISCHE ZEITSCHRIFT, 1981, 178 (03) :331-341
[3]  
Bujalance E., 1981, REV MAT HISP AM, V41, P121
[4]  
BUJALANCE E, 1990, LECTURE NOTES MATH, V1439
[5]  
CHETIYA BP, 1981, INDIAN J PURE AP MAT, V12, P1312
[6]  
CHETIYA BP, 1986, J LOND MATH SOC, V33, P467
[7]  
CHETIYA BP, 1981, THESIS BIRMINGHAM U
[8]  
Coxeter H.S., 1972, ERGEBNISSE MATH IHRE, V14
[9]   BORDERED KLEIN SURFACES WITH MAXIMAL SYMMETRY [J].
GREENLEAF, N ;
MAY, CL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 274 (01) :265-283
[10]   ON SOLUBLE GROUPS OF AUTOMORPHISM OF RIEMANN SURFACES [J].
GROMADZKI, G .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1991, 34 (01) :67-73