EXISTENCE AND FORMULATION OF VARIATIONAL PRINCIPLES FOR SYSTEMS OF SCALAR PARTIAL-DIFFERENTIAL EQUATIONS

被引:7
作者
BHUTANI, OP
SHARMA, S
机构
[1] Department of Mathematics, Indian Institute of Technology, New Delhi, 110029, Hauz Khas
关键词
D O I
10.1016/0020-7225(79)90082-X
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Using the consistency conditions due to Tonti for a potential operator, alternate variational principles for systems of scalar differential equations corresponding to the following physical situations have been formulated: (i) Isoenergetic flows, (ii) Plasma flows governed by modified Korteweg-de Vries type equation, (iii) Longitudinal waves in a non-linear geometrically dispersive fluid, (iv) Non-linear erosion. © 1979.
引用
收藏
页码:475 / 487
页数:13
相关论文
共 21 条
[1]  
ATHERTON RW, 1975, STUD APPL MATH, V54, P31
[2]  
Bhutani O. P., 1976, Journal of Mathematical and Physical Sciences, V10, P81
[3]  
BIRKHOFF G, 1960, HYDRODYNAMICS, P184
[4]  
CAREY GF, 1976, FINITE ELEMENTS FLUI, P159
[5]  
CROCCO L, 1973, ZAMM, V17, P1
[6]   EXISTENCE OF VARIATIONAL PRINCIPLES FOR NAVIER-STOKES EQUATION [J].
FINLAYSON, BA .
PHYSICS OF FLUIDS, 1972, 15 (06) :963-+
[7]  
FINLAYSON BA, 1970, METHOD WEIGHTED RESI
[8]   RELATION BETWEEN VARIATIONAL PRINCIPLES FOR INVISCID GAS-FLOWS IN SPACES OF DIFFERENT DIMENSIONS [J].
GUDERLEY, KG ;
BHUTANI, OP .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1973, 24 (02) :189-202
[9]  
GUDERLEY KG, 1971, ARL710136 TECH REP
[10]  
Korteweg D.J., 1895, PHILOS MAG, V39, P422, DOI [10.1080/14786449508620739, DOI 10.1080/14786449508620739]