Recent Advances in Room Temperature, High-Power Terahertz Quantum Cascade Laser Sources Based on Difference-Frequency Generation

被引:36
作者
Lu, Quanyong [1 ]
Razeghi, Manijeh [1 ]
机构
[1] Northwestern Univ, Dept Elect Engn & Comp Sci, Ctr Quantum Devices, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
terahertz; quantum cascade lasers; difference frequency generation; distributed feedback;
D O I
10.3390/photonics3030042
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present the current status of high-performance, compact, THz sources based on intracavity nonlinear frequency generation in mid-infrared quantum cascade lasers. Significant performance improvements of our THz sources in the power and wall plug efficiency are achieved by systematic optimizing the device's active region, waveguide, and chip bonding strategy. High THz power up to 1.9 mW and 0.014 mW for pulsed mode and continuous wave operations at room temperature are demonstrated, respectively. Even higher power and efficiency are envisioned based on enhancements in outcoupling efficiency and mid-IR performance. Our compact THz device with high power and wide tuning range is highly suitable for imaging, sensing, spectroscopy, medical diagnosis, and many other applications.
引用
收藏
页数:10
相关论文
共 34 条
[1]   Room temperature quantum cascade lasers with 27% wall plug efficiency [J].
Bai, Y. ;
Bandyopadhyay, N. ;
Tsao, S. ;
Slivken, S. ;
Razeghi, M. .
APPLIED PHYSICS LETTERS, 2011, 98 (18)
[2]   Highly temperature insensitive quantum cascade lasers [J].
Bai, Y. ;
Bandyopadhyay, N. ;
Tsao, S. ;
Selcuk, E. ;
Slivken, S. ;
Razeghi, M. .
APPLIED PHYSICS LETTERS, 2010, 97 (25)
[3]   Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency [J].
Bai, Y. ;
Slivken, S. ;
Darvish, S. R. ;
Razeghi, M. .
APPLIED PHYSICS LETTERS, 2008, 93 (02)
[4]   Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation [J].
Belkin, Mikhail A. ;
Capasso, Federico ;
Belyanin, Alexey ;
Sivco, Deborah L. ;
Cho, Alfred Y. ;
Oakley, Douglas C. ;
Vineis, Christopher J. ;
Turner, George W. .
NATURE PHOTONICS, 2007, 1 (05) :288-292
[5]   Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation [J].
Belkin, Mikhail A. ;
Capasso, Federico ;
Xie, Feng ;
Belyanin, Alexey ;
Fischer, Milan ;
Wittmann, Andreas ;
Faist, Jerome .
APPLIED PHYSICS LETTERS, 2008, 92 (20)
[6]   Quantum cascade lasers in chemical physics [J].
Curl, Robert F. ;
Capasso, Federico ;
Gmachl, Claire ;
Kosterev, Anatoliy A. ;
McManus, Barry ;
Lewicki, Rafal ;
Pusharsky, Michael ;
Wysocki, Gerard ;
Tittel, Frank K. .
CHEMICAL PHYSICS LETTERS, 2010, 487 (1-3) :1-18
[7]   Terahertz emission in asymmetric quantum wells by frequency mixing of midinfrared waves [J].
Dupont, Emmanuel ;
Wasilewski, Zbig R. ;
Liu, H. C. .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2006, 42 (11-12) :1157-1174
[8]   QUANTUM CASCADE LASER [J].
FAIST, J ;
CAPASSO, F ;
SIVCO, DL ;
SIRTORI, C ;
HUTCHINSON, AL ;
CHO, AY .
SCIENCE, 1994, 264 (5158) :553-556
[9]   Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling [J].
Fathololoumi, S. ;
Dupont, E. ;
Chan, C. W. I. ;
Wasilewski, Z. R. ;
Laframboise, S. R. ;
Ban, D. ;
Matyas, A. ;
Jirauschek, C. ;
Hu, Q. ;
Liu, H. C. .
OPTICS EXPRESS, 2012, 20 (04) :3866-3876
[10]   Materials for terahertz science and technology [J].
Ferguson, B ;
Zhang, XC .
NATURE MATERIALS, 2002, 1 (01) :26-33