ABELIAN COCYCLES FOR NONSINGULAR ERGODIC TRANSFORMATIONS AND THE GENERICITY OF TYPE-III1 TRANSFORMATIONS

被引:16
作者
CHOKSI, JR
HAWKINS, JM
PRASAD, VS
机构
[1] SUNY STONY BROOK,DEPT MATH,STONY BROOK,NY 11794
[2] YORK UNIV,DEPT MATH,DOWNSVIEW M3J 1P3,ONTARIO,CANADA
来源
MONATSHEFTE FUR MATHEMATIK | 1987年 / 103卷 / 03期
关键词
D O I
10.1007/BF01364339
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The authors prove that in the space of nonsingular transformations of a Lebesgue probability space the type III1 ergodic transformations form a dense Gδ set with respect to the coarse topology. They also prove that for any locally compact second countable abelian group H, and any ergodic type III transformation T, it is generic in the space of H-valued cocycles for the integer action given by T that the skew product of T with the cocycle is orbit equivalent to T. Similar results are given for ergodic measure-preserving transformations as well. © 1987 Springer-Verlag.
引用
收藏
页码:187 / 205
页数:19
相关论文
共 18 条
[1]   RESIDUALITY OF ERGODIC MEASURABLE TRANSFORMATIONS AND OF ERGODIC TRANSFORMATIONS WHICH PRESERVE AN INFINITE MEASURE [J].
CHOKSI, JR ;
KAKUTANI, S .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1979, 28 (03) :453-469
[2]   LOCALLY COMPACT-GROUPS APPEARING AS RANGES OF COCYCLES OF ERGODIC Z-ACTIONS [J].
GOLODETS, VY ;
SINELSHCHIKOV, SD .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1985, 5 (MAR) :47-57
[3]  
GOLODETS VY, 1983, EXISTENCE UNIQUENESS
[4]  
HAMACHI T, 1981, SEM MATH SCI, V3
[5]  
HAWKINS J, 1981, TOPOLOGICAL PROPERTI
[6]  
HERMAN M, 1979, CONSTRUCTION DIFFEOM
[7]   PROPER THEORY OF NAMES [J].
KATZ, JJ .
PHILOSOPHICAL STUDIES, 1977, 31 (01) :1-80
[8]  
Krieger W., 1970, LECT NOTES MATH, V160, P158
[9]  
KRIEGER W, 1976, MATH ANN, V223, P18
[10]   ERGODIC THEORY AND VIRTUAL GROUPS [J].
MACKEY, GW .
MATHEMATISCHE ANNALEN, 1966, 166 (03) :187-&