Non Semi-Simple sl(2) Quantum Invariants, Spin Case

被引:0
作者
Blanchet, Christian [1 ]
Costantino, Francesco [2 ]
Geer, Nathan [3 ]
Patureau-Mirand, Bertrand [4 ]
机构
[1] Univ Paris Diderot, Sorbonne Paris Cite, CNRS, IMJ PRG,UMR 7586, F-75013 Paris, France
[2] Univ Toulouse III Paul Sabatier, IMT, F-31062 Toulouse, France
[3] Utah State Univ, Math & Stat, Logan, UT 84322 USA
[4] Univ Bretagne Sud, LMBA, UMR 6205, F-56000 Vannes, France
关键词
Quantum invariants; 3-manifolds; Non semi-simple; Spin structures;
D O I
10.1007/s40306-014-0089-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Invariants of 3-manifolds from a non semi-simple category of modules over a version of quantum sl(2) were obtained by the last three authors in Costantino et al. ( To appear in J. Topology. 2014). In their construction, the quantum parameter q is a root of unity of order 2r where r > 1 is odd or congruent to 2 modulo 4. In this paper, we consider the remaining cases where r is congruent to zero modulo 4 and produce invariants of 3-manifolds with colored links, equipped with generalized spin structure. For a given 3-anifold M, the relevant generalized spin structures are ( non canonically) parametrized by H-1(M; C/2Z).
引用
收藏
页码:481 / 495
页数:15
相关论文
共 16 条
[1]  
Akutsu Y., 1992, J KNOT THEOR RAMIF, V1, P161
[2]  
Beliakova A., IN PRESS
[3]   A spin decomposition of the Verlinde formulas for type A modular categories [J].
Blanchet, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 257 (01) :1-28
[4]   Topological quantum field theories for surfaces with spin structure [J].
Blanchet, C ;
Masbaum, G .
DUKE MATHEMATICAL JOURNAL, 1996, 82 (02) :229-267
[5]   Hecke algebras, modular categories and 3-manifolds quantum invariants [J].
Blanchet, C .
TOPOLOGY, 2000, 39 (01) :193-223
[6]  
Blanchet C., ARXIV14047289
[7]  
Costantino F., 2014, ALGEBRAIC G IN PRESS
[8]  
Costantino F., 2014, J PURE APPL IN PRESS
[9]   Quantum invariants of 3-manifolds via link surgery presentations and non-semi-simple categories [J].
Costantino, Francesco ;
Geer, Nathan ;
Patureau-Mirand, Bertrand .
JOURNAL OF TOPOLOGY, 2014, 7 (04) :1005-1053
[10]   On the SL (2, C) quantum 6j - symbols and their relation to the hyperbolic volume [J].
Costantinoand, Francesco ;
Murakami, Jun .
QUANTUM TOPOLOGY, 2013, 4 (03) :303-351