KETAMINE AS A PROBE FOR MEDETOMIDINE STEREOISOMER INHIBITION OF HUMAN LIVER MICROSOMAL DRUG-METABOLISM

被引:32
|
作者
KHARASCH, ED [1 ]
HERRMANN, S [1 ]
LABROO, R [1 ]
机构
[1] UNIV WASHINGTON,DEPT MED CHEM,SEATTLE,WA 98195
关键词
ANESTHETICS; INTRAVENOUS; KETAMINE; INTERACTIONS; DRUG; METABOLISM; SYMPATHETIC NERVOUS SYSTEM; ALPHA-2-ADRENERGIC AGONIST; DEXMEDETOMIDINE; MEDETOMIDINE; STEREOCHEMISTRY;
D O I
10.1097/00000542-199212000-00023
中图分类号
R614 [麻醉学];
学科分类号
100217 ;
摘要
Medetomidine (MED) is a novel, selective, alpha2 adrenergic agonist with potent sedative, hypnotic, and analgesic properties, currently undergoing evaluation as an anesthetic adjuvant. The pharmacologic effects of MED are stereospecific, due entirely to the D-isomer (DMED), whereas the L-isomer (LMED) is essentially inactive. DMED, a 4(5)substituted imidazole, has been shown to inhibit adrenal steroidogenesis and human liver microsomal alfentanil metabolism, reactions mediated by cytochrome P-450. The mechanism of MED inhibition of cytochrome P-450 is unknown. The purpose of this investigation was to determine the mechanism of DMED inhibition of human cytochrome P-450-mediated microsomal metabolism, using ketamine as a probe. Ketamine undergoes extensive hepatic biotransformation and has been used previously to characterize the effects of imidazole anesthetics on human P-450-catalyzed drug metabolism. Ketamine N-demethylation by microsomes from three human livers was measured by gas chromatography-mass spectrometry with selected-ion monitoring. DMED was a potent, competitive inhibitor of S(+) ketamine N-demethylation, with a K(i) of 0.11-0.18 muM for the high affinity ketamine demethylase. The IC50 for DMED inhibition of therapeutic concentrations of racemic ketamine (10 muM) was 0.15 +/- 0.02 muM. Preincubation of DMED with microsomes and an NADPH generating system prior to ketamine addition had no additional effect on the inhibition of ketamine demethylase activity, thereby implicating the parent compound rather than a DMED metabolite as the inhibitory species. LMED, although pharmacologically inactive, had a greater inhibitory effect than DMED on racemic ketamine and ketamine enantiomer demethylation at therapeutic concentrations. Spectral studies showed that DMED interacted with microsomal cytochrome P-450 to elicit a Type II binding spectrum. These results demonstrate that DMED is a potent inhibitor of cytochrome P-450 catalytic activity, inhibiting ketamine demethylation by direct binding to P-450 heme iron and competitive inhibition at the substrate binding site. DMED, compared to the mixture of isomers, has a lesser potential for drug interactions at equally effective concentrations.
引用
收藏
页码:1208 / 1214
页数:7
相关论文
共 50 条