MODULATIONAL STABILITY AND SOLITARY WAVE OF THE SURFACE POLARITON - GENERALIZED NONLINEAR SCHRODINGER-EQUATION

被引:2
|
作者
LI, GF
SESHADRI, SR
机构
[1] Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison
来源
PHYSICAL REVIEW B | 1992年 / 45卷 / 20期
关键词
D O I
10.1103/PhysRevB.45.11993
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Using a dynamic approach, we prove that the evolution of the nonlinear surface polariton is governed by the generalized nonlinear Schrodinger equation. Self-phase modulation and self-modulational stability via the generalized nonlinear Schrodinger equation are investigated. A solitary-wave solution of the generalized nonlinear Schrodinger equation is obtained. It is shown that the solitary wave does not satisfy the collision properties and thus is not a soliton. The solitary wave possesses the unique property that its width and height can be independently adjusted. The effect of cross-phase modulation on the stability of interacting nonlinear-wave systems is also treated. The self-phase modulational instability is convective and the cross-phase modulational instability can be either convective or absolute.
引用
收藏
页码:11993 / 12010
页数:18
相关论文
共 50 条
  • [21] AN EXACT SOLUTION OF A GENERALIZED NONLINEAR SCHRODINGER-EQUATION
    STENFLO, L
    YU, MY
    SHUKLA, PK
    PHYSICA SCRIPTA, 1989, 40 (03): : 257 - 258
  • [22] WHITHAM DEFORMATIONS PARTIALLY SATURATING A MODULATIONAL INSTABILITY IN A NONLINEAR SCHRODINGER-EQUATION
    BIKBAEV, RF
    KUDASHEV, VR
    JETP LETTERS, 1994, 59 (11) : 770 - 774
  • [23] Accessible solitary wave families of the generalized nonlocal nonlinear Schrodinger equation
    Zhong, W. -P.
    Belic, M.
    Huang, T. W.
    Xie, R. H.
    EUROPEAN PHYSICAL JOURNAL D, 2010, 59 (02): : 301 - 304
  • [24] Exact solitary and periodic wave solutions for a generalized nonlinear Schrodinger equation
    Sun, Chengfeng
    Gao, Hongjun
    CHAOS SOLITONS & FRACTALS, 2009, 39 (05) : 2399 - 2410
  • [25] STABILITY OF A SOLITON SOLUTION OF A NONLINEAR SCHRODINGER-EQUATION
    ZHIDKOV, PE
    DIFFERENTIAL EQUATIONS, 1986, 22 (06) : 703 - 711
  • [26] BRIGHT-DARK SOLITARY-WAVE SOLUTIONS OF A MULTIDIMENSIONAL NONLINEAR SCHRODINGER-EQUATION
    HAYATA, K
    KOSHIBA, M
    PHYSICAL REVIEW E, 1993, 48 (03): : 2312 - 2315
  • [27] STABILITY OF ISOTROPIC SINGULARITIES FOR THE NONLINEAR SCHRODINGER-EQUATION
    LANDMAN, MJ
    PAPANICOLAOU, GC
    SULEM, C
    SULEM, PL
    WANG, XP
    PHYSICA D, 1991, 47 (03): : 393 - 415
  • [28] Integrability, modulational instability and mixed localized wave solutions for the generalized nonlinear Schrodinger equation
    Li, Xinyue
    Han, Guangfu
    Zhao, Qiulan
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (02):
  • [29] On the spectral stability of solitary wave solutions of the vector nonlinear Schrodinger equation
    Deconinck, Bernard
    Sheils, Natalie E.
    Nguyen, Nghiem V.
    Tian, Rushun
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (41)
  • [30] EXACT-SOLUTIONS FOR A GENERALIZED NONLINEAR SCHRODINGER-EQUATION
    PATHRIA, D
    MORRIS, JL
    PHYSICA SCRIPTA, 1989, 39 (06): : 673 - 679