ORTHOGONAL VECTORS IN THE N-DIMENSIONAL CUBE AND CODES WITH MISSING DISTANCES

被引:22
作者
FRANKL, P [1 ]
机构
[1] UNIV PARIS 07,UER MATH,F-75221 PARIS 05,FRANCE
关键词
D O I
10.1007/BF02579389
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:279 / 285
页数:7
相关论文
共 50 条
[41]   2-Factors Without Close Edges in the n-Dimensional Cube [J].
Bykov I.S. .
Journal of Applied and Industrial Mathematics, 2019, 13 (03) :405-417
[42]   On single and multiple covering of n-dimensional space with a cube lattice. [J].
Hajos, G .
MATHEMATISCHE ZEITSCHRIFT, 1942, 47 :427-467
[43]   SOME BINOMIAL IDENTITIES ARISING FROM A PARTITION OF AN n-DIMENSIONAL CUBE [J].
Kisielewicz, Andrzej P. .
FIBONACCI QUARTERLY, 2014, 52 (04) :325-330
[45]   Constraint Satisfaction Problems on Specific Subsets of the n-Dimensional Unit Cube [J].
Aslanyan, Levon ;
Sahakyan, Hasmik ;
Gronau, Hans-Dietrich ;
Wagner, Peter .
TENTH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES REVISED SELECTED PAPERS CSIT-2015, 2015, :47-52
[46]   On the Perfectness of Minimal Regular Partitions of the Edge Set of the n-Dimensional Cube [J].
Rychkov K.L. .
Journal of Applied and Industrial Mathematics, 2019, 13 (04) :717-739
[47]   Rotation invariant cubature formulas over the n-dimensional unit cube [J].
Cools, R ;
Kim, KJ .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 132 (01) :15-32
[48]   Balancing vectors and Gaussian measures of n-dimensional convex bodies [J].
Banaszczyk, W .
RANDOM STRUCTURES & ALGORITHMS, 1998, 12 (04) :351-360
[49]   On a continuous n-dimensional Rubik's cube without 2-dimensional symmetries [J].
Sbeih, Reema A. .
MONATSHEFTE FUR MATHEMATIK, 2025, 207 (01) :141-150
[50]   AN INEQUALITY FOR DENSITY OF SUM OF SETS OF VECTORS IN N-DIMENSIONAL SPACE [J].
FREEDMAN, AR .
PACIFIC JOURNAL OF MATHEMATICS, 1966, 19 (02) :265-&