AUTOMATED CLASSIFICATION OF IUE LOW-DISPERSION SPECTRA .1. NORMAL STARS

被引:0
作者
VIEIRA, EF
PONZ, JD
机构
[1] ESA, ECNOD, E-28080 MADRID, SPAIN
[2] LAEFF, E-28080 MADRID, SPAIN
来源
ASTRONOMY & ASTROPHYSICS SUPPLEMENT SERIES | 1995年 / 111卷 / 02期
关键词
METHODS; DATA ANALYSIS; TECHNIQUES; SPECTROSCOPIC; STARS; FUNDAMENTAL PARAMETERS;
D O I
暂无
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Along the life of the IUE project, a large archive with spectral data has been generated, requiring automated classification methods to be analyzed in an objective form. Previous automated classification methods used with IUE spectra were based on multivariate statistics. In this paper, we compare two classification methods that can be directly applied to spectra in the archive: metric distance and artificial neural networks. These methods are used to classify IUE low-dispersion spectra of normal stars with spectral types ranging from O3 to G5. The classification based on artificial neural networks performs better than the metric distance, allowing the determination of the spectral classes with an accuracy of 1.1 spectral subclasses.
引用
收藏
页码:393 / 398
页数:6
相关论文
共 23 条
  • [1] EGRET D, 1984, NASA CP2349, P512
  • [2] EGRET D, 1983, ESA SP201, P59
  • [3] STELLAR SPECTRAL CLASSIFICATION USING AUTOMATED SCHEMES
    GULATI, RK
    GUPTA, R
    GOTHOSKAR, P
    KHOBRAGADE, S
    [J]. ASTROPHYSICAL JOURNAL, 1994, 426 (01) : 340 - 344
  • [4] HECK A, 1986, ASTROPHYS SPACE SCI, V120, P223
  • [5] HECK A, 1984, ESA SP1052
  • [6] HECK A, 1987, EXPLORING UNIVERSE I, P121
  • [7] IMADACHE A, 1990, ESA SP PUBL, V310, P597
  • [8] IMADACHE A, 1992, THESIS OBERVATOIRE A
  • [9] JACOBI GH, 1994, APJS, V56, P257
  • [10] JASCHEK M, 1984, MK PROCESS STELLAR C, P290