New Results on Multidimensional Chinese Remainder Theorem

被引:4
作者
Lin, Yuan-Pei [1 ]
Phoong, See-May [1 ]
Vaidyanathan, P. P. [1 ]
机构
[1] CALTECH, Dept Elect Engn, Pasadena, CA 91125 USA
关键词
D O I
10.1109/97.335067
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Chinese remainder theorem ( CRT) [1] has been well known for applications in fast DFT computations and computer arithmetic. In [ 2], Guessoum and Mersereau first made headway in extending the CRT to multidimensional ( MD) nonseparable systems and showing its usefulness. This letter will generalize the result and present a more general form. This more general MDCRT is an exact counterpart of 1DCRT.
引用
收藏
页码:176 / 178
页数:3
相关论文
共 9 条
[1]   A NEW TECHNIQUE FOR TWIDDLE-FACTOR ELIMINATION IN MULTIDIMENSIONAL FFTS [J].
BERNARDINI, R ;
CORTELAZZO, GM ;
MIAN, GA .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1994, 42 (08) :2176-2178
[2]   A GENERAL SCRAMBLING RULE FOR MULTIDIMENSIONAL FFT ALGORITHMS [J].
BERNARDINI, R ;
CORTELAZZO, GM ;
MIAN, GA .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1994, 42 (07) :1786-1794
[3]   AN ALGORITHM FOR MACHINE CALCULATION OF COMPLEX FOURIER SERIES [J].
COOLEY, JW ;
TUKEY, JW .
MATHEMATICS OF COMPUTATION, 1965, 19 (90) :297-&
[4]  
Dudgeon D. E., 1984, MULTIDIMENSIONAL DIG
[5]   FAST ALGORITHMS FOR THE MULTIDIMENSIONAL DISCRETE FOURIER-TRANSFORM [J].
GUESSOUM, A ;
MERSEREAU, RM .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1986, 34 (04) :937-943
[6]  
Knuth DonaldE., 1969, ART COMPUTER PROGRAM
[7]  
MCCLELLAN JH, 1979, NUMBER THEORY DIGITA
[8]  
Thomas L.H., 1963, APPL DIGITAL COMPUTE
[9]  
Vaidyanathan P., 1993, MULTIRATE SYSTEMS FI