WEIGHTED NORM INEQUALITIES FOR COMMUTATORS OF STRONGLY SINGULAR-INTEGRALS

被引:97
作者
GARCIACUERVA, J
HARBOURE, E
SEGOVIA, C
TORREA, JL
机构
[1] INTEC,RA-3000 SANTA FE,ARGENTINA
[2] INST ARGENTINO MATEMAT,RA-1055 BUENOS AIRES,ARGENTINA
关键词
D O I
10.1512/iumj.1991.40.40063
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study L(p) inequalities with different but related weights for commutators of a strongly singular integral and a multiplication operator. These commutators turn out to be controlled by commutators of fractional order of the Hardy-Littlewood maximal operator. The boundedness properties of these are obtained by extrapolation from infinity.
引用
收藏
页码:1397 / 1420
页数:24
相关论文
共 13 条
[1]   A COMMUTATOR THEOREM AND WEIGHTED BMO [J].
BLOOM, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 292 (01) :103-122
[2]   WEIGHTED NORM INEQUALITIES FOR STRONGLY SINGULAR CONVOLUTION-OPERATORS [J].
CHANILLO, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 281 (01) :77-107
[3]   FACTORIZATION THEOREMS FOR HARDY SPACES IN SEVERAL VARIABLES [J].
COIFMAN, RR ;
ROCHBERG, R ;
WEISS, G .
ANNALS OF MATHEMATICS, 1976, 103 (03) :611-635
[4]  
FEFFERMAN C, 1972, ACTA MATH-UPPSALA, V129, P137, DOI 10.1007/BF02392215
[5]  
Garcia-Cuerva J., 1985, WEIGHTED NORM INEQUA
[6]   EXTRAPOLATION RESULTS FOR CLASSES OF WEIGHTS [J].
HARBOURE, E ;
MACIAS, RA ;
SEGOVIA, C .
AMERICAN JOURNAL OF MATHEMATICS, 1988, 110 (03) :383-397
[7]  
HIRSCHMAN II, 1959, DUKE MATH J, V26, P222
[8]   WEIGHTED NORM INEQUALITIES FOR HARDY MAXIMAL FUNCTION [J].
MUCKENHOUPT, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 165 (MAR) :207-+
[9]  
Segovia C., 1991, PUBL MAT, V35, P209
[10]  
SEGOVIA C, IN PRESS T AM MATH S