FACTORIZATIONS FOR SELF-DUAL GAUGE-FIELDS

被引:1
|
作者
LERNER, DE
机构
[1] Department of Mathematics, University of Kansas, Lawrence, 66045, KS
关键词
D O I
10.1007/BF02156535
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For a particular class of patching matrices on P3(ℂ), including those for the complex instanton bundles with structure group Sp(k,ℂ) or O(2k,ℂ), we show that the associated Riemann-Hilbert problem G(x, λ)=G-(x, λ)·G+-1(x, λ) can be generically solved in the factored form G-=φ1φ2..... φn. If G{cyrillic}=G{cyrillic}n is the potential generated in the usual way from G-, and we set ψi=φ1....., φi with ψn=G-, then each ψialso generates a selfdual gauge potential Γi. The potentials are connected via the "dressing transformations" {Mathematical expression} of Zakharov-Shabat. The factorization is not unique; it depends on the (arbitrary) ordering of the poles of the patching matrix. © 1990 Springer-Verlag.
引用
收藏
页码:537 / 547
页数:11
相关论文
共 50 条