TRACKING DOWN LOCALIZED MODES IN PT-SYMMETRIC HAMILTONIANS UNDER THE INFLUENCE OF A COMPETING NONLINEARITY

被引:3
作者
Bagchi, Bijan [1 ]
Modak, Subhrajit [2 ]
Panigrahi, Prasanta K. [2 ]
机构
[1] Univ Calcutta, Dept Appl Math, 92 Acharya Prafulla Chandra Rd, Kolkata 700009, India
[2] Indian Inst Sci Educ & Res Kolkata, Dept Phys Sci, Mohanpur 741252, W Bengal, India
关键词
nonlinear Schrodinger equation; PT-symmetry; competing nonlinearity;
D O I
10.14311/AP.2014.54.0079
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The relevance of parity and time reversal (PT)-symmetric structures in optical systems has been known for some time with the correspondence existing between the Schrodinger equation and the paraxial equation of diffraction, where the time parameter represents the propagating distance and the refractive index acts as the complex potential. In this paper, we systematically analyze a normalized form of the nonlinear Schrodinger system with two new families of PT-symmetric potentials in the presence of competing nonlinearities. We generate a class of localized eigenmodes and carry out a linear stability analysis on the solutions. In particular, we find an interesting feature of bifurcation characterized by the parameter of perturbative growth rate passing through zero, where a transition to imaginary eigenvalues occurs.
引用
收藏
页码:79 / 84
页数:6
相关论文
共 34 条
[1]   On "Comment on Supersymmetry, PT-symmetry and spectral bifurcation" [J].
Abhinav, Kumar ;
Panigrahi, P. K. .
ANNALS OF PHYSICS, 2011, 326 (02) :538-539
[2]  
Aggarwal G. P., 2012, NONLINEAR FIBER OPTI
[3]   A new PT-symmetric complex Hamiltonian with a real spectrum [J].
Bagchi, B ;
Roychoudhury, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (01) :L1-L3
[4]   PT-symmetric square well and the associated SUSY hierarchies [J].
Bagchi, B ;
Mallik, S ;
Quesne, C .
MODERN PHYSICS LETTERS A, 2002, 17 (25) :1651-1664
[5]   Making sense of non-Hermitian Hamiltonians [J].
Bender, Carl M. .
REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (06) :947-1018
[6]   Introduction to PT-symmetric quantum theory [J].
Bender, CM .
CONTEMPORARY PHYSICS, 2005, 46 (04) :277-292
[7]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[8]   Exponentially Fragile PT Symmetry in Lattices with Localized Eigenmodes [J].
Bendix, Oliver ;
Fleischmann, Ragnar ;
Kottos, Tsampikos ;
Shapiro, Boris .
PHYSICAL REVIEW LETTERS, 2009, 103 (03)
[9]   PT Symmetry and Spontaneous Symmetry Breaking in a Microwave Billiard [J].
Bittner, S. ;
Dietz, B. ;
Guenther, U. ;
Harney, H. L. ;
Miski-Oglu, M. ;
Richter, A. ;
Schaefer, F. .
PHYSICAL REVIEW LETTERS, 2012, 108 (02)
[10]   PT-Symmetry Breaking and Laser-Absorber Modes in Optical Scattering Systems [J].
Chong, Y. D. ;
Ge, Li ;
Stone, A. Douglas .
PHYSICAL REVIEW LETTERS, 2011, 106 (09)