RIGOROUS GLOBAL OPTIMIZATION OF SYSTEM PARAMETERS

被引:0
作者
Makino, K. [1 ]
Berz, M. [1 ]
机构
[1] Michigan State Univ, E Lansing, MI 48824 USA
来源
VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA SERIYA 10 PRIKLADNAYA MATEMATIKA INFORMATIKA PROTSESSY UPRAVLENIYA | 2014年 / 10卷 / 02期
关键词
rigorous computation; Taylor model; function range bound; rigorous global optimization; parameter optimization;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, after reviewing the basics of the method of Taylor models which enables rigorous computations, we introduced various function range bounding methods utilizing the inherent information associated to Taylor models. The superb performance is demonstrated by using a simple but tricky example. These components allow the construction of rigorous global optimization tools. We explain how to construct such a tool based on the branch-and-bound approach using the example function, while illustrating the excellent quality obtained by the method of Taylor models with this, we proceed to demonstrate the efficiency by applying the method to a practical application to search all the parameter operation points yielding desired properties in a lattice of a charged particle storage ring.
引用
收藏
页码:61 / 71
页数:11
相关论文
共 14 条
[1]  
Alefeld G., 1983, INTRO INTERVAL COMPU
[2]   Long-term stability of the Tevatron by verified global optimization [J].
Berz, M ;
Makino, K ;
Kim, YK .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2006, 558 (01) :1-10
[3]  
BERZ M, 1991, SIAM PROC S, P147
[4]  
Berz M, 2011, MSUHEP101214 DEP PHY
[5]  
Berz M., 1999, MODERN MAP METHODS P
[6]   COSY INFINITY Version 9 [J].
Makino, K ;
Berz, M .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2006, 558 (01) :346-350
[7]  
Makino K., 1999, Reliable Computing, V5, P3, DOI 10.1023/A:1026485406803
[8]  
Makino K., 2003, INT J PURE APPL MATH, V6, P239
[9]  
Makino K., 1998, THESIS
[10]  
MAKINO K, 2005, T COMPUTERS, V11, P1611