A FRACTIONAL LANDESMAN-LAZER TYPE PROBLEM SET ON R-N

被引:3
作者
Ambrosio, Vincenzo [1 ]
机构
[1] Univ Napoli Federico II, Dipartimento Matemat & Applicaz Renato Caccioppli, Naples, Italy
来源
MATEMATICHE | 2016年 / 71卷 / 02期
关键词
Fractional Laplacian; Struwe's monotonicity-trick; Positive solutions;
D O I
10.4418/2016.71.2.8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By using the abstract version of Struwe's monotonicity-trick we prove the existence of a positive solution to the problem {(-Delta)(s)u + Ku = f(x,u) in R-N u epsilon H-s (R-N), K > 0 where f(x,t) : R-N x R -> R is a Caratheodory function, 1-periodic in x and does not satisfy the Ambrosetti-Rabinowitz condition.
引用
收藏
页码:99 / 116
页数:18
相关论文
共 20 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]  
Ambrosetti A., 1989, ARCH RATION MECH AN, V108, P79
[3]  
[Anonymous], ARXIV10094042
[4]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[5]  
Brezis H., 1983, ANAL FONCTIONNELLE
[6]   Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates [J].
Cabre, Xavier ;
Sire, Yannick .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (01) :23-53
[7]   Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity [J].
Chang, X. ;
Wang, Z-Q .
NONLINEARITY, 2013, 26 (02) :479-494
[8]   CONCENTRATION PHENOMENA FOR THE NONLOCAL SCHRODINGER EQUATION WITH DIRICHLET DATUM [J].
Davila, Juan ;
del Pino, Manuel ;
Dipierro, Serena ;
Valdinoci, Enrico .
ANALYSIS & PDE, 2015, 8 (05) :1165-1235
[9]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573
[10]   EXISTENCE AND SYMMETRY RESULTS FOR A SCHRODINGER TYPE PROBLEM INVOLVING THE FRACTIONAL LAPLACIAN [J].
Dipierro, S. ;
Palatucci, G. ;
Valdinoci, E. .
MATEMATICHE, 2013, 68 (01) :201-216