The Theorem on Equiconvergence for the Integral Operator on Simplest Graph with Cycle

被引:3
作者
Burlutskaya, M. Sh. [1 ]
机构
[1] Voronezh State Univ, Dept Math Anal, Voronezh, Russia
来源
IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA | 2008年 / 8卷 / 04期
关键词
integral operator; geometric graph; involution; the expansions in eigen and associated functions; equiconvergence;
D O I
10.18500/1816-9791-2008-8-4-8-13
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper deals with integral operators on the simplest geometric two-edge graph containing the cycle. The class of integral operators with range of values satisfying continuity condition into internal node of graph is described. The equiconvergence of expansions in eigen and adjoint functions and trigonometric Fourier series is established.
引用
收藏
页码:8 / 13
页数:6
相关论文
共 7 条
[1]  
BARI NK, 1961, TRIGONOMETRICHESKIYE
[2]  
BURLUTSKAYA MSH, 2007, DIF URAVNENIYA, V43, P1597
[3]  
Khromov A.P., 1999, METR TEOR FUNKTSII S, P255
[4]  
Khromov A.P, 1981, MAT SB, V114, P378
[5]  
KHROMOV AP, 2008, SOVR METODY TEORII K, P225
[6]  
KHROMOV AP, 2006, MAT SBORNIK, V197, P115, DOI 10.4213/sm1534
[7]  
KORNEV VV, 2001, MAT SBORNIK, V192, P33, DOI 10.4213/sm601