Left Braces: Solutions of the Yang-Baxter Equation

被引:47
作者
Cedo, Ferran [1 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
关键词
left brace; Yang-Baxter equation; set-theoretic solution; Jacobson radical; holomorph; regular subgroup; monoid of I-type; group of I-type; bijetive; 1-cocycle; Garside monoid; Garside group;
D O I
10.4399/97888255161422
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This is a survey on the theory of left braces, an algebraic structure introduced by Rump as a generalization of Jacobson radical rings to study non-degenerate involutive set-theoretic solutions of the Yang-Baxter equation.
引用
收藏
页码:33 / 90
页数:58
相关论文
共 58 条
[1]   CIRCLE GROUPS OF NILPOTENT RINGS [J].
AULT, JC ;
WATTERS, JF .
AMERICAN MATHEMATICAL MONTHLY, 1973, 80 (01) :48-52
[2]   ITERATED MATCHED PRODUCTS OF FINITE BRACES AND SIMPLICITY; NEW SOLUTIONS OF THE YANG-BAXTER EQUATION [J].
Bachiller, D. ;
Cedo, F. ;
Jespers, E. ;
Okninski, J. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (07) :4881-4907
[3]  
Bachiller D., 2016, THESIS
[4]  
Bachiller D., PUBL MAT
[5]  
Bachiller D., J KNOT THEORY RAMIFI
[6]  
Bachiller D., ARXIV170508493
[7]   Extensions, matched products, and simple braces [J].
Bachiller, David .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2018, 222 (07) :1670-1691
[8]   Solutions of the Yang-Baxter equation associated with a left brace [J].
Bachiller, David ;
Cedo, Ferran ;
Jespers, Eric .
JOURNAL OF ALGEBRA, 2016, 463 :80-102
[9]   Counterexample to a conjecture about braces [J].
Bachiller, David .
JOURNAL OF ALGEBRA, 2016, 453 :160-176
[10]   Classification of braces of order p3 [J].
Bachiller, David .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2015, 219 (08) :3568-3603