Graphical Modeling for High Dimensional Data

被引:0
|
作者
Begum, Munni [1 ]
Bagga, Jay [2 ]
Blakey, C. Ann [3 ]
机构
[1] Ball State Univ, Dept Math Sci, Stat, Muncie, IN 47306 USA
[2] Ball State Univ, Comp Sci, Muncie, IN 47306 USA
[3] Ball State Univ, Dept Biol, Genet, Muncie, IN 47306 USA
关键词
High dimensional data; graphical Markov models; conditional independence; Markov properties; chain graphs;
D O I
10.22237/jmasm/1351743360
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
With advances in science and information technologies, many scientific fields are able to meet the challenges of managing and analyzing high-dimensional data. A so-called large p small n problem arises when the number of experimental units, n, is equal to or smaller than the number of features, p. A methodology based on probability and graph theory, termed graphical models, is applied to study the structure and inference of such high-dimensional data.
引用
收藏
页码:457 / 468
页数:12
相关论文
共 50 条
  • [1] Sparse Graphical Modeling for High Dimensional Data: A Paradigm of Conditional Independence Tests
    Ananda, Vira
    Sari, Visi Komala
    Anisah
    Mukhaiyar, Utriweni
    Liang, Faming
    Jia, Bochao
    TECHNOMETRICS, 2024, 66 (02) : 308 - 309
  • [2] Sparse Graphical Modeling for High Dimensional Data: A Paradigm of Conditional Independence Tests
    Mohammadi, Reza
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (547) : 2421 - 2422
  • [3] Sparse graphical modeling for high dimensional data: a paradigm of conditional independence tests
    Chen, Li-Pang
    BIOMETRICS, 2024, 80 (01)
  • [4] Graphical Modeling of High-Dimensional Time Series
    Tugnait, Jitendra K.
    2018 CONFERENCE RECORD OF 52ND ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2018, : 840 - 844
  • [5] A double regression method for graphical modeling of high-dimensional nonlinear and non-Gaussian data
    Liang, Siqi
    Liang, Faming
    STATISTICS AND ITS INTERFACE, 2024, 17 (04) : 669 - 680
  • [6] High dimensional semiparametric latent graphical model for mixed data
    Fan, Jianqing
    Liu, Han
    Ning, Yang
    Zou, Hui
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2017, 79 (02) : 405 - 421
  • [7] Graphical model selection and estimation for high dimensional tensor data
    He, Shiyuan
    Yin, Jianxin
    Li, Hongzhe
    Wang, Xing
    JOURNAL OF MULTIVARIATE ANALYSIS, 2014, 128 : 165 - 185
  • [8] Modeling High-Dimensional Data
    Vempala, Santosh S.
    COMMUNICATIONS OF THE ACM, 2012, 55 (02) : 112 - 112
  • [9] High-dimensional undirected graphical models for arbitrary mixed data
    Goebler, Konstantin
    Drton, Mathias
    Mukherjee, Sach
    Miloschewski, Anne
    ELECTRONIC JOURNAL OF STATISTICS, 2024, 18 (01): : 2339 - 2404
  • [10] High-dimensional Gaussian graphical models on network-linked data
    Li, Tianxi
    Qian, Cheng
    Levina, Elizaveta
    Zhu, Ji
    1600, Microtome Publishing (21):