Automorphisms of a distance-regular graph with intersection array {176, 135, 32, 1; 1, 16, 135, 176}.

被引:0
作者
Makhnev, A. A. [1 ]
Paduchikh, D. V. [1 ]
机构
[1] Russian Acad Sci, Krasovskii Inst Math & Mech, Ural Branch, Ekaterinburg 620990, Russia
来源
TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN | 2018年 / 24卷 / 02期
关键词
strongly regular graph; distance-regular graph; graph automorphism;
D O I
10.21538/0134-4889-2018-24-2-173-184
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A distance-regular graph Gamma with intersection array {176, 135, 32, 1; 1, 16, 135, 176} is an AT4-graph. Its antipodal quotient Gamma is a strongly regular graph with parameters (672, 176, 40, 48). In both graphs the neighborhoods of vertices are strongly regular with parameters (176, 40, 12, 8). We study the automorphisms of these graphs. In particular, the graph Gamma is not arc-transitive. If G = Aut (contains an element of order 11, acts transitively on the vertex set of Gamma, and S(G) fixes each antipodal class, then the full preimage of the group (G/S(G))' is an extension of a group of order 3 by M-22 or U-6 (2). We describe automorphism groups of strongly regular graphs with parameters (176, 40, 12, 8) and (672, 176, 40, 48) in the vertex-symmetric case.
引用
收藏
页码:173 / 184
页数:12
相关论文
共 8 条
[1]   Strongly regular graphs with non-trivial automorphisms [J].
Behbahani, Majid ;
Lam, Clement .
DISCRETE MATHEMATICS, 2011, 311 (2-3) :132-144
[2]   THE GEWIRTZ GRAPH - AN EXERCISE IN THE THEORY OF GRAPH SPECTRA [J].
BROUWER, AE ;
HAEMERS, WH .
EUROPEAN JOURNAL OF COMBINATORICS, 1993, 14 (05) :397-407
[3]  
Cameron P.J., 1999, LONDON MATH SOC STUD, V45
[4]   On Automorphisms of Distance-Regular Graphs with Intersection Array {56,45,1;1,9,56} [J].
Gavrilyuk, A. L. ;
Makhnev, A. A. .
DOKLADY MATHEMATICS, 2010, 81 (03) :439-442
[5]  
Gutnova A. K., 2010, T I MAT NATS AKAD NA, V18, P28
[6]   On strongly regular graphs with eigenvalue μ and their extensions [J].
Makhnev, A. A. ;
Paduchikh, D. V. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2014, 285 :S128-S135
[7]  
The GAP Group, 2018, GAP GROUPS ALG PROGR
[8]  
Zavarnitsine AV, 2009, SIB ELECTRON MATH RE, V6, P1