Cytochemical staining of normal human bone cells in monolayer cultures for alkaline phosphatase (ALP) indicated that the cultures contained mixed-cell populations. Time course evaluations of the cytochemical staining revealed, in addition to the ALP-negative cell population, at least two subpopulations of ALP-positive human bone cells with different levels of ALP. A cytochemical method has been developed which separates the ALP-positive cells into high and intermediate ALP subpopulations. In this method, human bone cells were stained for ALP using an azo-dye method and incubating at 4°C for 10 and 30 minutes, respectively. We defined the cell population that stained positively for ALP at 10 minutes as strong ALP-positive cells, and both strong and intermediate cells were stained at 30 minutes. The intermediate cells were determined from the difference between the values at the two time points. The intra- and interassay variations of the assay, with the same investigator in blinded investigations, were both less than 10% and the interobserver variation was approximately 25%. Analysis of the distribution of ALP levels in cells with a laser densitometer confirmed the presence of at least three cell subpopulations. 1,25(OH)2D3 treatment increased the proportions of both ALP-positive cell populations, whereas TGF-beta treatment increased only the intermediate ALP-positive cell population. On the contrary, fluoride increased the proportion of the strong ALP cells, and IGF-1 had no effect on the proportions of either ALP-positive subpopulation. When the ALP-specific activity was compared with the percentage of each ALP-positive subpopulations for the cells treated with effectors, the ALP-specific activity correlated with the total ALP-positive and with the strong ALP-positive populations but not with the intermediate ALP-positive subpopulation. In summary, this study represents the first evidence that normal human bone cells in monolayer cultures contained at least two subpopulations of ALP-positive cells, and that bone cell effectors could have differential effects on each cell population. © 1990 Springer-Verlag New York Inc.