Fundamental solution and sharp L-p estimates for Laplace operators in the contact complex of Heisenberg groups

被引:0
作者
Baldi, Annalisa [1 ]
Franchi, Bruno [1 ]
Tesi, Maria Carla [1 ]
机构
[1] Univ Bologna, Dipartimento Matemat, Piazza Porta S Donato 5, I-40126 Bologna, Italy
关键词
Heisenberg groups; Differential forms; Currents; Laplace operators; Fundamental solution;
D O I
10.1007/s11587-006-0009-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we construct a fundamental solution for the Laplace operator on the contact complex in Heisenberg groups H-n (Rumin's complex) relying on the notion of currents in H-n given recently by Franchi, Serapioni and Serra Cassano. This operator is of order 2 on k intrinsic forms for k not equal n, but is of order 4 on n intrinsic forms. As an application, we prove sharp L-p a priori estimates for horizontal derivatives.
引用
收藏
页码:119 / 144
页数:26
相关论文
共 16 条
  • [11] Non-tangentially accessible domains for vector fields
    Monti, R
    Morbidelli, D
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2005, 54 (02) : 473 - 498
  • [12] PANSU P, 1993, LONDON MATH SOC LECT, V192, P183
  • [13] RUMIN M, 1994, J DIFFER GEOM, V39, P281
  • [14] Sanchez-Calle A., 1988, REV MAT IBEROAM, V4, P177
  • [15] Stein E. M., 1993, PRINCETON MATH SERIE, V43
  • [16] Varopoulos N. T., 1992, CAMBRIDGE TRACTS MAT, V100