A RECURSION THEOREM ON SOLVING DIFFERENTIAL-DIFFERENCE EQUATIONS AND APPLICATIONS TO SOME STOCHASTIC PROCESSES

被引:33
作者
SEVERO, NC
机构
关键词
D O I
10.2307/3212111
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:673 / &
相关论文
共 9 条
[1]   SIMPLE STOCHASTIC EPIDEMIC - A COMPLETE SOLUTION IN TERMS OF KNOWN FUNCTIONS [J].
BAILEY, NTJ .
BIOMETRIKA, 1963, 50 (3-4) :235-&
[2]   ULTIMATE SIZE OF CARRIER-BORNE EPIDEMICS [J].
DOWNTON, F .
BIOMETRIKA, 1968, 55 (02) :277-&
[3]   ON A PARTIAL DIFFERENTIAL EQUATION OF EPIDEMIC THEORY .1. [J].
GANI, J .
BIOMETRIKA, 1965, 52 :617-&
[4]  
GANI J, 1967, 5TH P BERK S MATH ST, V4, P271
[5]   MATHEMATICAL ANALYSIS OF AN EPIDEMIC WITH 2 KINDS OF SUSCEPTIBLES [J].
GART, JJ .
BIOMETRICS, 1968, 24 (03) :557-&
[6]   STOCHASTIC CROSS-INFECTION BETWEEN 2 OTHERWISE ISOLATED GROUPS [J].
HASKEY, HW .
BIOMETRIKA, 1957, 44 (1-2) :193-204
[8]   PROBABILITIES OF SOME MODELS [J].
SEVERO, NC .
BIOMETRIKA, 1969, 56 (01) :197-&
[9]   A SOLUTION OF GENERAL STOCHASTIC EPIDEMIC [J].
SISKIND, V .
BIOMETRIKA, 1965, 52 :613-&