Objective Bayesian Estimation of Two-Parameter Pareto Distribution

被引:0
作者
Son, Young Sook [1 ]
机构
[1] Chonnam Natl Univ, Dept Stat, 300 Yongbong Dong, Kwangju 500757, South Korea
基金
新加坡国家研究基金会;
关键词
2-parameter Pareto distribution; L-moment estimation; maximum likelihood estimation; noninformative prior; reference prior; objective Bayesian estimation; Gibbs sampling; adaptive rejection sampling;
D O I
10.5351/KJAS.2013.26.5.713
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
An objective Bayesian estimation procedure of the two-parameter Pareto distribution is presented under the reference prior and the noninformative prior. Bayesian estimators are obtained by Gibbs sampling. The steps to generate parameters in the Gibbs sampler are from the shape parameter of the gamma distribution and then the scale parameter by the adaptive rejection sampling algorism. A numerical study shows that the proposed objective Bayesian estimation outperforms other estimations in simulated bias and mean squared error.
引用
收藏
页码:713 / 723
页数:11
相关论文
共 20 条
[1]  
ARNOLD B. C., 1983, PARETO DISTRIBUTIONS
[2]   BAYESIAN-ESTIMATION AND PREDICTION FOR PARETO DATA [J].
ARNOLD, BC ;
PRESS, SJ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1989, 84 (408) :1079-1084
[3]   BAYESIAN-INFERENCE FOR PARETO POPULATIONS [J].
ARNOLD, BC ;
PRESS, SJ .
JOURNAL OF ECONOMETRICS, 1983, 21 (03) :287-306
[4]   The Case for Objective Bayesian Analysis [J].
Berger, James .
BAYESIAN ANALYSIS, 2006, 1 (03) :385-402
[5]  
Casella G., 2002, STAT INFERENCE, VSecond ed.
[6]  
Crovella ME, 1998, PRACTICAL GUIDE TO HEAVY TAILS, P3
[7]   A parametric model of the fire-size distribution [J].
Cumming, SG .
CANADIAN JOURNAL OF FOREST RESEARCH, 2001, 31 (08) :1297-1303
[8]  
Embrechts P., 1997, MODELING EXTREMAL EV
[9]   Objective Bayesian analysis of Pareto distribution under progressive Type-II censoring [J].
Fu, Jiayu ;
Xu, Ancha ;
Tang, Yincai .
STATISTICS & PROBABILITY LETTERS, 2012, 82 (10) :1829-1836
[10]  
GILKS WR, 1992, J R STAT SOC C-APPL, V41, P337