ESTIMATION OF NORMAL COVARIANCE AND PRECISION MATRICES WITH INCOMPLETE DATA

被引:5
作者
KRISHNAMOORTHY, K [1 ]
机构
[1] TEMPLE UNIV,DEPT STAT,PHILADELPHIA,PA 19122
关键词
WISHART DISTRIBUTION; LOSS FUNCTION; MINIMAX ESTIMATOR;
D O I
10.1080/03610929108830529
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Suppose that we have n independent observations from N(p)(0, SIGMA) and, in addition, we have m independent observations available on the first q(q < p) coordinates. Assuming that X(i)'s and Y(i)'s are independent, we consider the problem of estimation of SIGMA and SIGMA-1 respectively under the loss functions L(SIGMA, SIGMA-triple-overdot) = tr(SIGMA-triple-overdot-SIGMA-1) - log\SIGMA-triple-overdot-SIGMA-1\ - p and L1(SIGMA-1, SIGMA-triple-overdot-1) = tr(SIGMA-triple-overdot-1-SIGMA) - log\SIGMA-triple-overdot-1-SIGMA\ - p. We propose some new estimators that dominate the best lower triangular invariant minimax estimator under the loss L. We also derive the best lower triangular invariant minimax estimator of SIGMA-1 under L1 and suggest some estimators that dominate it.
引用
收藏
页码:757 / 770
页数:14
相关论文
共 6 条
[2]   ESTIMATION OF A COVARIANCE-MATRIX UNDER STEINS LOSS [J].
DEY, DK ;
SRINIVASAN, C .
ANNALS OF STATISTICS, 1985, 13 (04) :1581-1591
[3]  
EATON ML, 1970, 49 STANF U DEP STAT
[4]   IMPROVED MINIMAX ESTIMATION OF A NORMAL PRECISION MATRIX [J].
KRISHNAMOORTHY, K ;
GUPTA, AK .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1989, 17 (01) :91-102
[5]  
SHARMA D, 1985, CALCUTTA STAT ASS B, V34, P23
[6]   A REPRESENTATION OF BAYES INVARIANT PROCEDURES IN TERMS OF HAAR MEASURE [J].
ZIDEK, JV .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1969, 21 (02) :291-&