Almost Lie nilpotent non-prime varieties of associative algebras

被引:0
作者
Finogenova, O. B.
机构
来源
TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN | 2015年 / 21卷 / 04期
关键词
variety of associative algebras; identities of the associated Lie algebra; Lie nilpotency; Engel property;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A variety of associative algebras is called Lie nilpotent if it satisfies the identity [...[[x(1), x(2)], ..., x(n)] = 0 for some positive integer n, where [x, y] = xy - yx. We study almost Lie nilpotent varieties, i.e., minimal elements in the set of all varieties that are not Lie nilpotent. We describe all almost Lie nilpotent varieties of algebras over a field of positive characteristic, both finite and infinite, in the cases when the ideals of identities of these varieties are nonprime in the class of all T-ideals.
引用
收藏
页码:282 / 291
页数:10
相关论文
共 12 条
  • [1] Finogenova OB, 2015, SIB ELECTRON MATH RE, V12, P1, DOI [DOI 10.17377/semi.2015.12.001, 10.17377/semi.2015.12.001]
  • [2] Finogenova O. B., 2004, ALGEBRA LOGIKA+, V43, p[482, 508, 271], DOI [10.1023/B:ALLO.0000035118.51742.41, DOI 10.1023/B:ALL0.0000035118.51742.41]
  • [3] Higgins P., 1954, P CAMB PHILOS SOC, V50, P8, DOI [10.1017/S0305004100029017, DOI 10.1017/S0305004100029017]
  • [4] KEMER AR, 1980, ALGEBRA LOGIKA+, V19, P255
  • [5] KOSTRIKIN AI, 1986, VOKRUG BERNSAIDA
  • [6] Kublanovskii S. I., 1997, ALGEBR ANAL, V9, p[119, 763]
  • [7] Mal'cev Yu. N., 1996, TAMKANG J MATH, V27, P59
  • [8] MALTSEV YN, 1982, IZV VUZ MAT+, P41
  • [9] MALTSEV YN, 1976, ALGEBRA LOGIKA+, V15, P579
  • [10] Zel'manov E.I., 1991, MAT SBORNIK, V182, P568