A GLOBALLY CONVERGENT NEWTON METHOD FOR CONVEX SC1 MINIMIZATION PROBLEMS

被引:60
作者
PANG, JS [1 ]
QI, L [1 ]
机构
[1] UNIV NEW S WALES,DEPT MATH APPL,SYDNEY,NSW,AUSTRALIA
关键词
NONSMOOTH OPTIMIZATION; NEWTON METHOD;
D O I
10.1007/BF02193060
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper presents a globally convergent and locally superlinearly convergent method for solving a convex minimization problem whose objective function has a semismooth but nondifferentiable gradient. Applications to nonlinear minimax problems, stochastic programs with recourse, and their extensions are discussed.
引用
收藏
页码:633 / 648
页数:16
相关论文
共 29 条
  • [11] GENERALIZED HESSIAN MATRIX AND 2ND-ORDER OPTIMALITY CONDITIONS FOR PROBLEMS WITH C1,1 DATA
    HIRIARTURRUTY, JB
    STRODIOT, JJ
    NGUYEN, VH
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 1984, 11 (01) : 43 - 56
  • [12] JIANG H, LOCAL UNIQUENESS NEW
  • [13] Klatte D., 1988, Optimization, V19, P169, DOI 10.1080/02331938808843333
  • [14] EXTENSION OF NEWTON AND QUASI-NEWTON METHODS TO SYSTEMS OF PC1 EQUATIONS
    KOJIMA, M
    SHINDO, S
    [J]. JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF JAPAN, 1986, 29 (04) : 352 - 375
  • [15] KUMMER B, 1991, J OPTIMIZATION THEOR, V70, P559
  • [16] KUNTZ L, 1992, STRUCTURAL ANAL NONS
  • [17] MIFFLIN R, 1977, SIAM J CONTROL OPTIM, V15, P957
  • [18] Ortega J.M., 1970, OCLC1154227410, Patent No. 1154227410
  • [19] MINIMIZATION OF LOCALLY LIPSCHITZIAN FUNCTIONS
    Pang, Jong-Shi
    Han, Shih-Ping
    Rangaraj, Narayan
    [J]. SIAM JOURNAL ON OPTIMIZATION, 1991, 1 (01) : 57 - 82
  • [20] NONSMOOTH EQUATIONS: MOTIVATION AND ALGORITHMS
    Pang, Jong-Shi
    Qi, Liqun
    [J]. SIAM JOURNAL ON OPTIMIZATION, 1993, 3 (03) : 443 - 465