A GLOBALLY CONVERGENT NEWTON METHOD FOR CONVEX SC1 MINIMIZATION PROBLEMS

被引:60
作者
PANG, JS [1 ]
QI, L [1 ]
机构
[1] UNIV NEW S WALES,DEPT MATH APPL,SYDNEY,NSW,AUSTRALIA
关键词
NONSMOOTH OPTIMIZATION; NEWTON METHOD;
D O I
10.1007/BF02193060
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper presents a globally convergent and locally superlinearly convergent method for solving a convex minimization problem whose objective function has a semismooth but nondifferentiable gradient. Applications to nonlinear minimax problems, stochastic programs with recourse, and their extensions are discussed.
引用
收藏
页码:633 / 648
页数:16
相关论文
共 29 条