SMALL AMPLITUDE LIMIT-CYCLES OF THE GENERALIZED MIXED RAYLEIGH-LIENARD OSCILLATOR

被引:17
作者
LYNCH, S
机构
[1] Department of Mathematics and Physics, Manchester Metropolitan University, Manchester
关键词
D O I
10.1006/jsvi.1994.1509
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper is concerned with the generalized mixed (Rayleigh-Lienard) oscillator equations of the form x + x + b30x3 + (a1 + b21x2 + b41x4 + b03x2)x = 0. The problem is to obtain the maximum possible number of limit cycles under perturbation of the coefficients arising in these equations. An algorithm is implemented on a computer to determine a so-called focal basis. Estimates can then be obtained for the number of limit cycles which may be bifurcated in a small region of the origin. It is shown that at most three small amplitude limit cycles may be bifurcated.
引用
收藏
页码:615 / 620
页数:6
相关论文
共 13 条
[1]  
BAUTIN N. N., 1954, AM MATH SOC TRANSLAT, V100
[2]   THE NUMBER OF LIMIT-CYCLES OF CERTAIN POLYNOMIAL DIFFERENTIAL-EQUATIONS [J].
BLOWS, TR ;
LLOYD, NG .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1984, 98 :215-239
[3]  
BLOWS TR, 1984, MATH P CAMBRIDGE PHI, V95, P3659
[4]   CUBIC LIENARD EQUATIONS WITH LINEAR DAMPING [J].
DUMORTIER, F ;
ROUSSEAU, C .
NONLINEARITY, 1990, 3 (04) :1015-1039
[5]  
GARCIAMARGALLO J, 1992, J SOUND VIBRATION, V156, P2383
[6]  
Lins A., 1977, LECT NOTES MATH, P335
[7]   SMALL-AMPLITUDE LIMIT-CYCLES OF CERTAIN LIENARD SYSTEMS [J].
LLOYD, NG ;
LYNCH, S .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1988, 418 (1854) :199-208
[8]  
LLOYD NG, 1988, LMS LECTURE NOTES, V127
[9]  
LLOYD NG, 1991, J APPLIED MATH, P163
[10]  
Lynch S., 1990, Calcolo, V27, P1, DOI 10.1007/BF02576145