ON SOLVING OPERATOR-EQUATIONS BY MULTIPOINT ITERATIVE METHODS

被引:0
作者
MORET, I [1 ]
机构
[1] UNIV TRIESTE,DIPARTIMENTO ELETTROTECN ELETTR & INFORMAT,I-34100 TRIESTE,ITALY
关键词
D O I
10.1080/00207168608803533
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:77 / 90
页数:14
相关论文
共 50 条
[31]   Some new efficient multipoint iterative methods for solving nonlinear systems of equations [J].
Lotfi, Taher ;
Bakhtiari, Parisa ;
Cordero, Alicia ;
Mahdiani, Katayoun ;
Torregrosa, Juan R. .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2015, 92 (09) :1921-1934
[32]   ENCLOSING METHODS IN PERTURBED NONLINEAR OPERATOR-EQUATIONS [J].
SCHMIDT, JW ;
SCHNEIDER, H .
COMPUTING, 1984, 32 (01) :1-11
[33]   AN ITERATIVE METHOD OF IMPROVING THE ACCURACY OF THE SOLUTION OF LINEAR OPERATOR-EQUATIONS [J].
VILENKIN, SY ;
SAMOKHIN, AB .
USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1982, 22 (02) :220-224
[34]   A METHOD FOR SOLVING ILL-POSED LINEAR OPERATOR-EQUATIONS [J].
TRUMMER, MR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1984, 21 (04) :729-737
[35]   Some Iterative Methods for Solving Operator Equations by Using Fusion Frames [J].
Jamali, Hasan ;
Kolahdouz, Mohsen .
FILOMAT, 2022, 36 (06) :1955-1965
[36]   Iterative methods for solving nonlinear irregular operator equations in Banach space [J].
Bakushinsky, AB ;
Kokurin, MY .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2000, 21 (3-4) :355-378
[37]   ON THE SOLVABILITY OF OPERATOR-EQUATIONS [J].
ALIYEV, RM ;
MAMEDOV, GK .
IZVESTIYA AKADEMII NAUK AZERBAIDZHANSKOI SSR SERIYA FIZIKO-TEKHNICHESKIKH I MATEMATICHESKIKH NAUK, 1979, (05) :94-99
[38]   GEOMETRIC-PROPERTIES OF BANACH-SPACES AND THE APPROXIMATE METHODS OF SOLVING NONLINEAR OPERATOR-EQUATIONS [J].
ALBER, JI ;
NOTIK, AI .
DOKLADY AKADEMII NAUK SSSR, 1984, 276 (05) :1033-1037
[39]   DEGENERATE OPERATOR-EQUATIONS [J].
DEZIN, AA .
MATHEMATICS OF THE USSR-SBORNIK, 1981, 115 (03) :287-298
[40]   APPROXIMATE NEWTON METHODS AND HOMOTOPY FOR STATIONARY OPERATOR-EQUATIONS [J].
JEROME, JW .
CONSTRUCTIVE APPROXIMATION, 1985, 1 (03) :271-285