ON THE CHANNEL CAPACITY OF READ/WRITE ISOLATED MEMORY

被引:15
作者
COHN, M
机构
[1] Computer Science Department, Brandeis University, Waltham
关键词
D O I
10.1016/0166-218X(93)E0130-Q
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We apply graph theory to find upper and lower bounds on the channel capacity of a serial, binary, rewritable medium in which consecutive locations may not store 1's, and consecutive locations may not be altered during a single rewriting pass. If the true capacity is close to the upper bound, then a trivial code is nearly optimal.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 7 条
[1]   WRITE-ISOLATED MEMORIES (WIMS) [J].
COHEN, GD ;
ZEMOR, G .
DISCRETE MATHEMATICS, 1993, 114 (1-3) :105-113
[2]  
Cvetkovic D.M., 1980, SPECTRA GRAPHS THEOR, V87
[3]   OPTIMUM BLOCK CODES FOR NOISELESS INPUT RESTRICTED CHANNELS [J].
FREIMAN, CV ;
WYNER, AD .
INFORMATION AND CONTROL, 1964, 7 (03) :398-+
[4]   FIBONACCI CODES FOR SYNCHRONIZATION CONTROL [J].
KAUTZ, WH .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1965, 11 (02) :284-292
[5]   ASYMMETRIC ERROR-CORRECTING TERNARY CODE [J].
ROBINSON, JP .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1978, 24 (02) :258-261
[6]  
Shannon Claude E., 1949, MATH THEORY COMMUNIC
[7]   CODING FOR A WRITE-ONCE MEMORY [J].
WOLF, JK ;
WYNER, AD ;
ZIV, J ;
KORNER, J .
AT&T BELL LABORATORIES TECHNICAL JOURNAL, 1984, 63 (06) :1089-1112