ANOSOV-FLOWS IN 3-MANIFOLDS

被引:85
作者
FENLEY, SR [1 ]
机构
[1] UNIV CALIF BERKELEY, MSRI, BERKELEY, CA 94720 USA
关键词
D O I
10.2307/2946628
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:79 / 115
页数:37
相关论文
共 39 条
[11]  
FENLEY SR, 1992, J DIFFER GEOM, V36, P269
[12]   QUASI-ISOMETRIC FOLIATIONS [J].
FENLEY, SR .
TOPOLOGY, 1992, 31 (03) :667-676
[13]   GEODESIC-FLOWS ON MANIFOLDS OF NEGATIVE CURVATURE WITH SMOOTH HOROSPHERIC FOLIATIONS [J].
FERES, R .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1991, 11 :653-686
[14]  
Franks J., 1970, GLOBAL ANAL, V14, P61
[15]   THE GEOMETRY OF CROSS-SECTIONS TO FLOWS [J].
FRIED, D .
TOPOLOGY, 1982, 21 (04) :353-371
[16]   TRANSITIVE ANOSOV-FLOWS AND PSEUDO-ANOSOV MAPS [J].
FRIED, D .
TOPOLOGY, 1983, 22 (03) :299-303
[17]   CONVERGENCE GROUPS ARE FUCHSIAN-GROUPS [J].
GABAI, D .
ANNALS OF MATHEMATICS, 1992, 136 (03) :447-510
[18]  
GHYS E, 1991, PROGR MATH, V83
[19]  
GOODMAN S, 1983, LECTURE NOTES, V1007
[20]  
Gordon C.McA., 1989, J AM MATH SOC, V2, P371, DOI 10.1090/S0894-0347-1989-0965210-7