DIVISORIAL PROPERTIES OF THE CANONICAL MODULE FOR INVARIANT SUBRINGS

被引:3
作者
WESTON, D
机构
[1] Department of Mathematics, University of Missouri, Columbia
基金
美国国家科学基金会;
关键词
D O I
10.1080/00927879108824285
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:2641 / 2666
页数:26
相关论文
共 50 条
[41]   Good filtrations of symmetric algebras and strong F-regularity of invariant subrings [J].
Hashimoto, M .
MATHEMATISCHE ZEITSCHRIFT, 2001, 236 (03) :605-623
[42]   INVARIANT DESCRIPTION OF MASLOVS CANONICAL OPERATOR [J].
BUSLAEV, VS .
DOKLADY AKADEMII NAUK SSSR, 1969, 184 (01) :59-&
[43]   CANONICAL DETECTION IN SPHERICALLY INVARIANT NOISE [J].
CONTE, E ;
DIBISCEGLIE, M ;
LONGO, M ;
LOPS, M .
IEEE TRANSACTIONS ON COMMUNICATIONS, 1995, 43 (2-4) :347-353
[44]   On the growth of the Betti sequence of the canonical module [J].
David A. Jorgensen ;
Graham J. Leuschke .
Mathematische Zeitschrift, 2007, 256 :647-659
[45]   Canonical detection in spherically invariant noise [J].
Conte, Ernesto ;
Bisceglie, Maurizio Di ;
Longo, Maurizio ;
Lops, Marco .
IEEE Transactions on Communications, 1995, 43 (2 -4 pt 1) :347-353
[46]   On the growth of the Betti sequence of the canonical module [J].
Jorgensen, David A. ;
Leuschke, Graham J. .
MATHEMATISCHE ZEITSCHRIFT, 2007, 256 (03) :647-659
[47]   THE CANONICAL MODULE OF AN ASSOCIATED GRADED RING [J].
BRUNS, W .
ARCHIV DER MATHEMATIK, 1986, 47 (04) :320-323
[48]   On the growth of the Betti sequence of the canonical module [J].
David A. Jorgensen ;
Graham J. Leuschke .
Mathematische Zeitschrift, 2008, 260 :713-715
[49]   Module varieties over canonical algebras [J].
Barot, M ;
Schröer, J .
JOURNAL OF ALGEBRA, 2001, 246 (01) :175-192
[50]   AZUMAYAS CANONICAL MODULE AND COMPLETIONS OF ALGEBRAS [J].
OSTERBUR.J .
NAGOYA MATHEMATICAL JOURNAL, 1973, 49 (MAR) :9-19