DIVISORIAL PROPERTIES OF THE CANONICAL MODULE FOR INVARIANT SUBRINGS

被引:3
作者
WESTON, D
机构
[1] Department of Mathematics, University of Missouri, Columbia
基金
美国国家科学基金会;
关键词
D O I
10.1080/00927879108824285
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:2641 / 2666
页数:26
相关论文
共 50 条
[21]   LOG CANONICAL MODELS FOR THE MODULI SPACE OF CURVES: THE FIRST DIVISORIAL CONTRACTION [J].
Hassett, Brendan ;
Hyeon, Donghoon .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (08) :4471-4489
[22]   ON INVARIANT CANONICAL TRANSFORMATIONS [J].
BERGMANN, PG .
PHYSICAL REVIEW, 1951, 82 (02) :321-321
[23]   The trace of the canonical module [J].
Jürgen Herzog ;
Takayuki Hibi ;
Dumitru I. Stamate .
Israel Journal of Mathematics, 2019, 233 :133-165
[24]   THE TRACE OF THE CANONICAL MODULE [J].
Herzog, Juergen ;
Hibi, Takayuki ;
Stamate, Dumitru I. .
ISRAEL JOURNAL OF MATHEMATICS, 2019, 233 (01) :133-165
[25]   Action of finite groups on Rees algebras and Gorensteinness in invariant subrings [J].
Iai, SI .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1999, 42 :393-401
[26]   Applications of some properties of the canonical module in computational projective algebraic geometry [J].
Chardin, M .
JOURNAL OF SYMBOLIC COMPUTATION, 2000, 29 (4-5) :527-544
[27]   Simultaneous canonical correlation analysis with invariant canonical loadings [J].
Gu F. ;
Wu H. .
Behaviormetrika, 2018, 45 (1) :111-132
[28]   Invariant theory of canonical algebras [J].
Domokos, M ;
Lenzing, H .
JOURNAL OF ALGEBRA, 2000, 228 (02) :738-762
[29]   CANONICAL FORM OF INVARIANT MATRICES [J].
HUNTER, DB .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1970, 68 :21-&
[30]   Canonical Cohomology as an Exterior Module [J].
Lazarsfeld, Robert ;
Popa, Mihnea ;
Schnell, Christian .
PURE AND APPLIED MATHEMATICS QUARTERLY, 2011, 7 (04) :1529-1542