GIBBS-WILBRAHAM PHENOMENON - EPISODE IN FOURIER-ANALYSIS

被引:196
作者
HEWITT, E [1 ]
HEWITT, RE [1 ]
机构
[1] LOCKHEED MISSILES & SPACE CO INC,SUNNYVALE,CA 94088
关键词
D O I
10.1007/BF00330404
中图分类号
N09 [自然科学史]; B [哲学、宗教];
学科分类号
01 ; 0101 ; 010108 ; 060207 ; 060305 ; 0712 ;
摘要
[No abstract available]
引用
收藏
页码:129 / 160
页数:32
相关论文
共 51 条
[1]  
Abramowitz, 1972, HDB MATH FUNCTIONS F
[2]  
BARI NK, 1961, TRIGONOMETRICESKIE R
[3]   PARTIAL SUMS OF INFINITE SERIES, AND HOW THEY GROW [J].
BOAS, RP .
AMERICAN MATHEMATICAL MONTHLY, 1977, 84 (04) :237-258
[4]  
Bocher M, 1914, J REINE ANGEW MATH, V144, P41
[5]  
Bocher M, 1905, ANN MATH, V7, P81
[6]  
BURKHARDT H, 1914, ENCYKLOPADIE MATH WI, P819
[7]  
Carslaw H. S., 1930, INTRO THEORY FOURIER
[8]  
Carslaw H. S., 1925, B AM MATH SOC, V31, P420, DOI DOI 10.1090/S0002-9904-1925-04081-1
[9]   A trigonometrical sum and the Gibbs' phenomenon in Fourier's series [J].
Carslaw, HS .
AMERICAN JOURNAL OF MATHEMATICS, 1917, 39 :185-198
[10]  
CARSLAW HS, 1926, J LOND MATH SOC, V1, P201