ON THE VIRASORO ALGEBRA AS REDUCED POISSON SUBMANIFOLD OF A KAC-MOODY ALGEBRA ON THE CIRCLE

被引:2
作者
BEFFA, GM [1 ]
机构
[1] UNIV CALIF DAVIS,DEPT MATH,DAVIS,CA 95616
关键词
D O I
10.2307/2160765
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we show how the Lie-Poisson structure on the dual of the Virasoro algebra can be obtained through a standard Poisson reduction process performed on a Kac-Moody algebra on the circle. We use the geometrical idea of the process to establish some relation between transverse structures on both Poisson manifolds.
引用
收藏
页码:859 / 869
页数:11
相关论文
共 16 条
[1]  
ADLER M, 1979, INVENT MATH, V50, P219
[2]  
Antonowicz M, 1990, HAMILTONIAN STRUCTUR
[3]  
BEFFA GM, 1991, TRANSVERSE STRUCTURE
[4]   DRINFELD-SOKOLOV REDUCTION ON A SIMPLE LIE-ALGEBRA FROM THE BIHAMILTONIAN POINT-OF-VIEW [J].
CASATI, P ;
PEDRONI, M .
LETTERS IN MATHEMATICAL PHYSICS, 1992, 25 (02) :89-101
[5]  
Drinfel'd V. G., 1985, J SOV MATH, V30, P1975, DOI DOI 10.1007/BF02105860
[6]  
KHESIN BA, 1990, INVARIANT HAMILTONIA
[7]  
KIRILLOV AA, 1978, P INT C MATH HELSINK
[9]   REDUCTION OF POISSON MANIFOLDS [J].
MARSDEN, JE ;
RATIU, T .
LETTERS IN MATHEMATICAL PHYSICS, 1986, 11 (02) :161-169
[10]  
OVSIENKO VY, 1990, FUNKTSIONAL ANAL PRI, V24, P38