Model-Based Retrieval of Forest Parameters From Sentinel-1 Coherence and Backscatter Time Series

被引:0
|
作者
Lavalle, M. [1 ]
Telli, C. [2 ]
Pierdicca, N. [2 ]
Khati, U. [3 ]
Cartus, O. [4 ]
Kellndorfer, J. [5 ]
机构
[1] NASA, CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
[2] Sapienza Univ, Dept Informat Engn Elect & Telecommun, Rome 00185, Italy
[3] IIT Indore, Dept Astron Astrophys & Space Engn, Indore 453552, India
[4] Gamma Remote Sensing, CH-3073 Gumlingen, Switzerland
[5] Earth Big Data, Woods Hole, MA 02543 USA
关键词
Coherence; Backscatter; Vegetation; Data models; Laser radar; Decorrelation; Synthetic aperture radar; Forestry; radar interferometry; synthetic aperture radar (SAR);
D O I
暂无
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This letter describes a model-based algorithm for estimating tree height and other bio-physical land parameters from time series of synthetic aperture radar (SAR) interferometric coherence and backscatter supported by sparse lidar data. The random-motion-over-ground model (RMoG) is extended to time series and revisited to capture the short- and long-term temporal coherence variability caused by motion of the scatterers and changes in the soil and canopy backscatter. The proposed retrieval algorithm estimates first the spatially slow-varying RMoG model parameters using sparse lidar data, and subsequently the spatially fast-varying model parameters such as tree height. The recently published global Sentinel-1 (S-1) interferometric coherence and backscatter data set and sparse spaceborne GEDI lidar data are used to illustrate the algorithm. Results obtained for a small region over Spain show that the temporal coherence and backscatter time series have the potential to be used for global, model-based land parameter estimation.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Model-Based Retrieval of Forest Parameters From Sentinel-1 Coherence and Backscatter Time Series
    Lavalle, M.
    Telli, C.
    Pierdicca, N.
    Khati, U.
    Cartus, O.
    Kellndorfer, J.
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [2] GLOBAL SENTINEL-1 INSAR COHERENCE: OPPORTUNITIES FOR MODEL-BASED ESTIMATION OF LAND PARAMETERS
    Lavalle, M.
    Telli, C.
    Pierdicca, N.
    Khati, U.
    Cartus, O.
    Kellndorfer, J.
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1133 - 1136
  • [3] CROP TYPE MAPPING BASED ON SENTINEL-1 BACKSCATTER TIME SERIES
    Arias, M.
    Campo-Bescos, M. A.
    Alvarez-Mozos, J.
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 6623 - 6626
  • [4] Time-Series of Sentinel-1 Interferometric Coherence and Backscatter for Crop-Type Mapping
    Mestre-Quereda, Alejandro
    Lopez-Sanchez, Juan M.
    Vicente-Guijalba, Fernando
    Jacob, Alexander W.
    Engdahl, Marcus E.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 4070 - 4084
  • [5] Assessing the Utility of Sentinel-1 Coherence Time Series for Temperate and Tropical Forest Mapping
    Borlaf-Mena, Ignacio
    Badea, Ovidiu
    Tanase, Mihai Andrei
    REMOTE SENSING, 2021, 13 (23)
  • [6] Analysis of forest loss by Sentinel-1 SAR time series
    Lee, Jung-Hoon
    Sumantyo, Josaphat Tetuko Sri
    Waqar, Mirza Muhammad
    Kim, Jae-Hyun
    11TH INTERNATIONAL CONFERENCE ON ICT CONVERGENCE: DATA, NETWORK, AND AI IN THE AGE OF UNTACT (ICTC 2020), 2020, : 182 - 184
  • [7] Agricultural Land Cover Mapping based on Sentinel-1 Coherence Time-Series
    Nikaein, Tina
    Iannini, Lorenzo
    Dekker, Paco Lopez
    13TH EUROPEAN CONFERENCE ON SYNTHETIC APERTURE RADAR, EUSAR 2021, 2021, : 517 - 520
  • [8] Towards the Understanding of the C-Band Temporal Signature of Boreal Forest Through Physiology Parameters Retrieval from Sentinel-1 Time Series and Machine Learning
    Martino, Thomas Di
    Guinvarc'H, Regis
    Thirion-Lefevre, Laetitia
    Colin, Elise
    International Geoscience and Remote Sensing Symposium (IGARSS), 2023, 2023-July : 5551 - 5554
  • [9] Improved LSTM Model for Boreal Forest Height Mapping Using Sentinel-1 Time Series
    Ge, Shaojia
    Su, Weimin
    Gu, Hong
    Rauste, Yrjo
    Praks, Jaan
    Antropov, Oleg
    REMOTE SENSING, 2022, 14 (21)
  • [10] TOWARDS THE UNDERSTANDING OF THE C-BAND TEMPORAL SIGNATURE OF BOREAL FOREST THROUGH PHYSIOLOGY PARAMETERS RETRIEVAL FROM SENTINEL-1 TIME SERIES AND MACHINE LEARNING
    Di Martino, Thomas
    Guinvarc'h, Regis
    Thirion-Lefevre, Laetitia
    Colin, Elise
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5551 - 5554