The clinical contribution of cortical porosity to fragility fractures

被引:38
作者
Bjornerem, Ashild [1 ,2 ]
机构
[1] UiT Arctic Univ Norway, Fac Hlth Sci, Dept Clin Med, N-9037 Tromso, Norway
[2] Univ Hosp North Norway, Dept Obstet & Gynaecol, Tromso, Norway
关键词
D O I
10.1038/bonekey.2016.77
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Cortical bone is not compact; rather it is penetrated by many Haversian and Volkmann canals for blood supply. The lining of these canals are the intracortical bone surfaces available for bone remodeling. Increasing intracortical bone remodeling increases cortical porosity. However, cortical bone loss occurs more slowly than trabecular loss due to the fact that less surface per unit of bone matrix volume is available for bone remodeling. Nevertheless, most of the bone loss over time is cortical because cortical bone constitutes 80% of the skeleton, and the relative proportion of trabecular bone diminishes with advancing age. Higher serum levels of bone turnover markers are associated with higher cortical porosity of the distal tibia and the proximal femur. Greater porosity of the distal radius is associated with higher odds for forearm fracture, and greater porosity of the proximal femur is associated with higher odds for non-vertebral fracture in postmenopausal women. Measurement of cortical porosity contributes to fracture risk independent of areal bone mineral density and Fracture Risk Assessment Tool. On the other hand, antiresorptive treatment reduces porosity at the distal radius and at the proximal femoral shaft. Thus, porosity is a substantial determinant of the bone fragility that underlies the risk of fractures and may be a target for fracture prevention.
引用
收藏
页数:5
相关论文
共 51 条
[11]   Age- and Gender-Related Differences in the Geometric Properties and Biomechanical Significance of Intracortical Porosity in the Distal Radius and Tibia [J].
Burghardt, Andrew J. ;
Kazakia, Galateia J. ;
Ramachandran, Sweta ;
Link, Thomas M. ;
Majumdar, Sharmila .
JOURNAL OF BONE AND MINERAL RESEARCH, 2010, 25 (05) :983-993
[12]   Cortical bone: a target for fracture prevention? [J].
Burr, David B. .
LANCET, 2010, 375 (9727) :1672-1673
[13]   3D characterization of pores in the cortical bone of human femur in the elderly at different locations as determined by synchrotron micro-computed tomography images [J].
Chappard, C. ;
Bensalah, S. ;
Olivier, C. ;
Gouttenoire, P. J. ;
Marchadier, A. ;
Benhamou, C. ;
Peyrin, F. .
OSTEOPOROSIS INTERNATIONAL, 2013, 24 (03) :1023-1033
[14]  
CURREY JD, 2002, STRUCTURE MECH
[15]   Genetic influence on bone turnover in postmenopausal twins [J].
Garnero, P ;
Arden, NK ;
Griffiths, G ;
Delmas, PD ;
Spector, TD .
JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 1996, 81 (01) :140-146
[16]   Biochemical markers of bone turnover, endogenous hormones and the risk of fractures in postmenopausal women: The OFELY study [J].
Garnero, P ;
Sornay-Rendu, E ;
Claustrat, B ;
Delmas, PD .
JOURNAL OF BONE AND MINERAL RESEARCH, 2000, 15 (08) :1526-1536
[17]   Biochemical markers of bone metabolism and prediction of fracture in elderly women [J].
Gerdhem, P ;
Ivaska, KK ;
Alatalo, SL ;
Halleen, JM ;
Hellman, J ;
Isaksson, A ;
Pettersson, K ;
Väänänen, HK ;
Åkesson, K ;
Obrant, KJ .
JOURNAL OF BONE AND MINERAL RESEARCH, 2004, 19 (03) :386-393
[18]   High-resolution in vivo imaging of bone and joints: a window to microarchitecture [J].
Geusens, Piet ;
Chapurlat, Roland ;
Schett, Georg ;
Ghasem-Zadeh, Ali ;
Seeman, Ego ;
de Jong, Joost ;
van den Bergh, Joop .
NATURE REVIEWS RHEUMATOLOGY, 2014, 10 (05) :304-313
[19]   Preanalytical variability of biochemical markers of bone turnover [J].
Hannon, R ;
Eastell, R .
OSTEOPOROSIS INTERNATIONAL, 2000, 11 (Suppl 6) :30-44
[20]   Hip Fractures and the Contribution of Cortical Versus Trabecular Bone to Femoral Neck Strength [J].
Holzer, Gerold ;
von Skrbensky, Gobert ;
Holzer, Lukas A. ;
Pichl, Wolfgang .
JOURNAL OF BONE AND MINERAL RESEARCH, 2009, 24 (03) :468-474